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he molecular structures of 1,3-buta-

diene and 1,3,5-trans-hexatriene in the
vapour phase have been studied by the
sector electron diffraction method, using a
modified s® sector. The results presented in
this work are parts of our endeavour to
study the factors determining the lengths
of sp?-sp* carbon-carbon single bonds. The
research program also includes molecules
like 1,3,5,7-cyclo-octatetraene,! 1,3,5-cis-
hexatriene, 1,3-cyclo-pentadiene and the
cis,cis-, cisitrans- and trans,(trans-3,4-di-
methyl-2,4-hexadienes.

The molecular structure of 1,3-butadiene
reported here was determined simultane-
ously as the molecular structure of 1,3,5,7-
cyclo-octatetraene reported elsewhere.! The
two structures attract interest because of a
reported discrepancy between the carbon-
carbop single bond lengths ** which was not
in accordance with the current ideas of x-
electron delocalization.

* Present address: Harvard University, Cam-
bridge, Mass., U.S.A.
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The intensity data were treated accord-
ing to the usual well-established proce-
dure,? and for both molecules the effective
s-region of the resulting molecular intensity
functions (sM(s)-functions) extended from
s=1.25 A1 to about s =45 A"l The
bonded distances in the molecules were
determined by applying auto- and cross-
correlation functions ® to the intensity data,
while the complete structures in both cases
were determined by least-squares refine-
ments of the molecular intensity functions.
Tables 1 and 2 give the structural para-
meters obtained for 1,3-butadiene and
1,3,5-trans-hexatriene, respectively.

Table 1. 1,3-Butadiene. Internuclear distances,

root-mean-square amplitudes of vibrations,

bond angles and standard deviations as results

of a least-squares refinement of the molecular
intensity data.

Distance r (1), A drg(1), A u, A Au, A
C=C  1.343, 0.000, 0.043, 0.000,
C—C 1467, 0001, 0051, 0.001,
C,0,  2.469, 0.001, 0.064, 0.001,
C,C,  3.698, 0.003, 0.059, 0.002,
C—H 1.094, 0.001, 0.082, 0.001,

/C=C—C: 122.8° + 0.5°

JH—-C=C: 119.5° & 1.0°

Angle of rotation around C—C bond: 0.0°

Tadble 2. 1,3,5-trans-Hexatriene. Internuclear

distances, root-mean-square amplitudes of

vibrations, bond angles and standard devia-

tions as results of a least-squares refinement
of the molecular intensity data.

Distance 7,(1), A dry(1), A u, A  du, A
C=C 1.345, 0.001, 0.043; 0.001,
C—C 1450, 0.002, 0.052, 0.002
C,C;  2.472, 0.002, 0.058, 0.001,
C,C,  3.699, 0.067, 0.008,
C,C,  3.823, 0.067,  0.020,
C,C,  4.938, 0.095, 0.011,
C,C. 6129, 0.020, 0.084, 0.024,
C—H 1102, 0.003, 0.080, 0.002,

/C=C—C : 124.3° + 1.5°
/H—C=C:117.8° & 1.5°
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Fig. 1. Experimental (

) and theoretical (- - - -) molecular intensity functions for 1,3-

butadiene (A) and 1,3,5-trans-hexatriene (B).

The experimental sM(s)-functions for
both molecules are shown in Fig. 1, which
also indicate the two theoretical sM(s)-
functions calculated on the basis of the
structural parameters listed in Tables 1
and 2. The Fourier transforms of the modi-
fied molecular functions (modification
function: exp(—0.0009s%)) are presented in
Fig. 2 along with their theoretical coun-
terparts.

The correspondence between the various
experimental and theoretical functions for
1,3-butadiene is exceptionally good, a fact
which is reflected in the small standard
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Fig. 2. Experimental ( ) and theoretical

(- - - -) radial distribution functions for 1,3-

butadiene (A) and 1,3,5-trans-hexatriene (B).
Damping constant & = 0.0009.
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deviations resulting from the least-squares
refinement. The two vinyl groups were
allowed to rotate around the C—C single
bond during the least-squares refinement.
The best fit between the experimental and
theoretical sM(s)-functions was however
obtained for a planar trans model with no
rotation around the central carbon-carbon
bond. The longer distances in the molecule
are, however, only slightly influenced by a
moderate oscillation of the vinyl groups
around the ¢trans-position and an oscillation
around the trans-conformation with a root-
mean-square amplitude of about 10° can
not be excluded on the basis of the present
electron diffraction investigation. The
structural parameters of 1,3-butadiene and
1,3,5,7-cyclo-octatetraene are briefly com-
pared elsewhere.!

For 1,3,5-trans-hexatriene the corre-
spondence between the experimental and
theoretical sM(s)-functions and between
the radial distribution functions is satis-
factory, but not as good as in the 1,3-buta-
diene case. The longer distances in the
molecule correspond to an out-of-plane
motion that can formally be described as
rotations of the vinyl groups of about 11.9°
around the carbon-carbon single bonds, so
that the molecule assumes & ‘“boat’’ confor-
mation.

A full account of the work will be pub-
lished later together with a thorough dis-
cussion of the sp?-sp? carbon-carbon single
bond length.
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Algal Carotenoids

V. Iso-fucoxanthin — a Rearrange-
ment Product of Fucoxanthin

ARNE JENSEN

Norwegian Institute of Seaweed Research,
N.T.H., Trondheim, Norway

The use of seaweed meal as a feed ingre-
dient in rations to poultry prompted us
to investigate the fate of fucoxanthin, the
characteristic carotenoid of brown sea-
weeds, when fed to the laying hen. Sea-
weed meal feeding was found to increase
the yellow colour of the egg yolk.! Most of
the colour was caused by a transformation
product of fucoxanthin and no unchanged
fuﬁoxanthin could be detected in the egg
olk.
v During studies on the structure of fuco-
xanthin we observed the formation of a
similar, probably identical pigment, upon
chromatographic purification of fucoxan-
thin on a%]?;line adsorbents. Since studies
of the latter rearrangement product might
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shed some light on the nature of the egg
yolk pigment, work on the artefact formed
on alkaline adsorbents was undertaken.

Fucoxanthin was adsorbed to a column
of magnesium oxide from a petroleum
ether:acetone (10:1) solution and left on
the column overnight at room tempera-
ture. Extensive conversion to more polar
pigments took place, and no unchanged
fucoxanthin could be eluted from the
column. The main product, for which we
suggest the name iso-fucoxanthin, was re-
chromatographed on calcium carbonate
and gave, after two crystallisations from
diethyl ether-petroleum ether dark red-
violet needles which melted at 140°C
(uncorr.), Amax (430), 453 (E1% = 1600),
482 my (petroleum ether); Amax 3450, 2940,
1930, 1730, 1606, 1530, 1450, 1355, 1240,
1150, 1030, 960 cm™ (KBr-disc): T-values:
8.92, 8.75, 8.64, 8.62, 8.46, 8.18, 8.02, and
7.97. The compound was spectroscopically
and chromatographically inseparable from
one of the main egg yolk pigments obtained
from hens on seaweed meal rations.

By following the acetylation of iso-
fucoxanthin on paper chromatograms it
was established that the compound formed
a monoacetate under standard conditions
(acetic anhydride-pyridine at room tem-
perature overnight). The Rg-values of the
original pigment (0.24, on Schleicher &
Schiill, No. 287 paper using petroleum
ether containing 10 9, of acetone as sol-
vent) and of the acetate (0.46) indicated
the presence of (one) more hydroxy group
in these compounds over the corresponding
members of the fucoxanthin series (Rp=
0.49 for fucoxanthin and Rgp= 0.72 for
fucoxanthin acetate). In an attempt to
establish the character of the additional
hydroxy functions the two acetates were
treated with hexamethyldisilazane and tri-
methylchlorosilane and the course of the
ether formation was followed by paper
chromatography. Samples were taken from
the reaction mixtures at intervals and
subjected directly to paper chromatog-
raphy. The triacetate of fucoxanthol b ® was
also included in the experiment. The results
are shown in Table 1 and indicate that
fucoxanthin acetate and fucoxanthol b
acetate had only one accessible hydroxy
group each, while a diether was formed
from iso-fucoxanthin acetate.

The mass spectrum of iso-fucoxanthin
showed parent ion peak at mass number
658; further peaks at mass numbers 640
(P—18, water); 622 (P—(2 x 18)); 580
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