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A Semi-empirical Open Shell SCF-MO Method for Transition
Metal Complexes

B. ROOS

Institute of Theoretical Physics, Vanadisvigen 9, Stockholm Va, Sweden

An application of the Pariser, Parr, Pople method to transition
metal complexes is discussed. Open shell systems are handled accord-
ing to a method given by Roothaan. Formulas for the matrix elements
of the self-consistent field operator in the zero differential overlap
approximation are derived. The choice of semi-empirical parameters
is discussed. An application is made to the copper complexes
Cu(NH,;)2t and Cu(H,0)2*. The tetragonal distortion from octa-
hedral symmetry in these complexes is discussed and compared to
the results from other investigations.

1. INTRODUCTION AND SUMMARY

In theoretical investigations of zm-electron systems in organic molecules,
the self-consistent field molecular orbital (SCF-MO) method, with the
simplifications introduced by Pariser, Parr 12 and Pople, ® has been applied
with surprisingly good results during the last years. The relative simplicity of
this method makes it suitable for studies of large molecules, where other more
elaborate methods become intractable. The applicability of the method is,
however, limited by the approximations introduced, especially the so called
zero differential overlap (ZDO) approximation. This approximation has been
thoroughly discussed by Fischer-Hjalmars, who has investigated the limita-
tions for its application. It was shown, by means of a transformation to an
orthogonal set of basis orbitals, that the ZDO-approximation is equivalent to
the neglect of terms, which are of third and higher order in the overlap integrals
between the original atomic orbitals.” The author concludes that the ZDO-
approximation should be able to give reliable results for systems where the
overlap integrals do not exceed 0.4. The Pariser, Parr, Pople (PPP) method
is semi-empirical. The integrals needed to build up the Hartree-Fock matrix
in the atomic orbital representation are determined from certain experimentally
known properties of molecules and atoms, which can be related to these inte-
grals. This circumstance outbalances some of the uncertainties which are
introduced with the great simplifications made. The PPP-method has hitherto

Acta Chem. Scand. 20 (1966) No. 6 15



1674 B. ROOS

been applied mainly to m-electron systems. However, there is no inherent
property in the method which prevents its application also to other types of
bonding, within the limits set up by the ZDO-approximation.

This paper deals with an attempt to apply the PPP-method to molecular
complexes containing transition-metal ions. The molecular orbital description
of such complexes has hitherto mainly been made with the Wolfsberg-Helm-
holtz method.® This method is related to the Hiickel theory in the sense, that
it is based upon an effective one-electron operator. The matrix elements of
this operator are chosen empirically. The diagonal elements are determined
from the valence state ionization potentials of the metal and the ligands. The
relationship between this choice of parameters and the theoretical expression
for the one-electron operator is, however, rather unclear. Thus, for example,
the terms in the operator describing the potential field from the ligands have
no influence on the diagonal elements for the metal ion orbitals. The off-
diagonal elements of the energy matrix, the resonance integrals, are related
to the diagonal elements by means of the Wolfsberg-Helmholtz formula or the
modification introduced by Ballhausen and Gray.® Both these formulas contain
one or two constants, which are to be determined empirically from the ligand
field spectra of the system. The Wolfsberg-Helmholtz method has its greatest
advantage in its simplicity. Since it is mainly used to interpret spectra of
transition-metal complexes, the results obtained are often quite reliable. Some-
times, however, they seem to be fortuitous and only a result of an ambiguous
choice of the parameters.

The PPP-method retains some of the simplicity of the Wolfsberg-Helm-
holtz method, while, on the other hand, it avoids the unclearness in the defini-
tion of the parameters, since they are given as matrix elements of clearly
specified parts of a self-consistent field Hamiltonian. In the case of a closed
shell this operator is the ordinary Hartree-Fock operator. A similar operator
is introduced for the open shell case in a method developed by Roothaan 7
for the treatment of open shell systems. This method is, however, only ap-
plicable to systems, with certain types of symmetry of the ground state, where
the energy can be expressed by means of three parameters introduced into the
theory.

It is felt that the PPP-method makes it possible to do more careful inter-
pretations of the properties of the transition metal complexes, and represents
a middle course between the method of Wolfsberg and Helmholtz and, many
times very untractable, complete theoretical calculations.

Section 2 gives a brief review of Roothaan’s method for open shell systems.
The matrix elements occurring in this theory have been evaluated in the ZDO
approximation and are given in eqns. (4) — (6).

In section 3 we discuss the relation between these matrix elements and the
semi-empirical parameters introduced into the theory. The matrix elements
are divided into parts, each of which describes a certain type of interaction.
An interpolation formula (10) developed in a previous paper ° is used for the
two-electron integrals. The diagonal elements of the core operator are treated
with the Goeppert-Mayer, Sklar technique 1° (eqns. (14) — (15)). Different
methods to determine the resonance integrals are discussed (eqns. (16) —
(19)). It is found that the use of more appropriate formulas for these integrals,
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including more than one semi-empirical parameter, is at the present stage not
feasible, on account of lack of experimental information.

Finally in section 4 the method is applied to two copper complexes,
Cu(NH,)e*+ and Cu(H,0)g2*.

2. GENERAL FORMALISM IN THE ZDO APPROXIMATION

Since a closed shell system is a special case of the open shell system, the
latter will be discussed here as the general case. A method to find self-consis-
tent molecular orbitals for an open shell system has been given by Roothaan.?
This method is based upon an expression of the total electronic energy of the
following type.

E =2 ng + %(2 Ju — Ky) + f[2 gHm + fm252a Smn — b Kny) +
+ 232 T — Kinl] (1)

The summation indices ¥ and ! run over the doubly occupied molecular
orbitals while m and n run over the open shell orbitals. If these are degenerate,
m and n should run over the complete set of degenerate orbitals. The different
terms in (1) are matrix elements in the molecular orbital basis of the full
Hamiltonian of the system. Thus the elements H; are the diagonal elements
of the one-electron part of the Hamiltonian and J,; and K, the Coulomb and
exchange integrals. f, @, and b are numerical constants. Only ground states
for which the energy can be written according to (1), with suitable choices of
the constants, can be treated within the formalism discussed here. As an
example, we have for a single electron in a non-degenerate orbital outside a
closed shell, f = 1, @ = 1 and b = 2. The closed shell case is obtained with
f = 0. Generally f is the fractional occupation of the open shell, that is, the
number of open shell electrons divided with the total number of available spin-
orbitals in the shell.

The molecular orbitals (MO:s) ¢, are expressed as linear combinations
of atomic orbitals (AO:s) .

v, = g Cin Xy (2)

This is inserted into (1).'According to the variational principle the energy
is minimized with respect to the coefficients c;,, under the restriction that the
MO:s are orthonormal. This gives a matrix equation that determines the
coefficients c;;,, analogous to the Hartree-Fock equations. The full expression
for this equation has been given by Roothaan ? and we shall at this stage
introduce the ZDO-approximation and only present the simplified equation.
This approximation implies that the product of two atomic orbitals is put
equal to zero everywhere in space if the two orbitals are located at different
atomic centers. The validity of this approximation has been thoroughly
discussed by Fischer-Hjalmars ¢ and we refer to that article for this discussion.
It should only be noted here that the validity is restricted to the case where
the overlap integrals are less than 0.4. This is clearly the case for overlap
between 3d metal orbitals and ligand orbitals. In most cases it is also true for
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the 4s orbital. For the 4p orbital, on the other hand, this restriction is not
generally fulfilled. It is felt, however, that this should not be a too disturbing
fact, since the contribution of the 4p orbitals to the bonding in most cases is
weak.

All matrix elements containing products of atomic orbitals centered at
different atoms are thus put equal to zero, except for the resonance integrals
for which the ZDO-approximation is not applicable. This leads to the following
two simplifications. The overlap matrix becomes a unit matrix. The number
of two-electron integrals is heavily reduced. The only remaining integrals are
the Coulomb integrals and the one-center exchange integrals. The self-con-
sistent field equations are, expressed as a matrix equation

Fe,=e¢g¢ (3)

where ¢, is a column vector specifying the MO ¢, F is the energy matrix in
the AO representation, and ¢, is the corresponding eigenvalue. In order to
specify F we introduce a new set of matrices:

1. The density matrices for the closed (index C) and the open (index O)
shell with the elements

(Pc),ml = Zk 2 Cru Cry : (48,)

(Po)uv = | % 2 Cup Cmv (4b)

The total density matrix Pz is the sum of P and P,,.
2. Closed and open shell Coulomb (J) and exchange (K) matrices, with
the elements

T =% % (PIar 7w Suv + (Poluw %y (5a)
o =13 % (Podaa 74 Suv + (Po)uy %uv (5b)
Kdw = % % P %y Suv + 3 (P (Yuw + %) (5¢)
(Ko)uy = % Z (Po)ar #av Ouy + 3 (Poduy (Yuv + %) (5d)

Here y,, is the two-electron Coulomb integral and x,, the exchange integral.
The latter is only different from zero if the AO:s ¥, and ¥, belong to the same
center. The total Coulomb and exchange matrices J  and K are defined as the
sum of the closed and open shell matrices.

3. The total Coulomb and exchange coupling matrices L, and M, defined
by Roothaan. They can be written as matrix products.

Ly = § [PrJo + JoPal (6a)
M, = } [PK, + KyP,] (6b)

By means of (4a) — (6b) the matrix F occurring in (3) is specified in terms
of the density matrices and integrals in the AO representation.

F=H+2]J, — K+ 2aly — Jo) — (M, — Ko) (7)
Acta Chem. Scand. 20 (1966) No. 6
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where H is the matrix, in the AO representation, of the one-electron part of
the Hamiltonian for the electronic system. Two new numerical constants,
« and B, are introduced in (7). They are related to f, @, and b occurring in (1)
in the following way. ‘

«= (1 —a)l —f) (8a)
B=@1Q— b/Q—1 (8b)
In the case of one electron in a non-degenerate orbital outside a closed
shell we have « = 0 and § = —2. For the closed shell case F is the usual

Hartree-Fock matrix.

Eqgn. (3) is solved by an iteration procedure in exactly the same way as
in the closed shell case. As a final result self-consistent closed and open shell
eigenvectors and density matrices are obtained. It should be noted that the
eigenvalues ¢, are not in general ‘“‘orbital energies” in the meaning used for
closed shell systems. However, under the assumption that ionized states can
be described with the same MO:s as the ground state, ionization energies w,
for the different MO:s ¢, can be defined. The formulas determining these will be
different for different structure of the ground state, that is, different values
of f, a, and b. Here we will only give the expressions for w;, in the case of one
electron outside a closed shell. We have in this case

Wy = —&, + 3 (mm|mm) (9a)

where m refers to the open shell orbital and (mm|mm) is the two-electron
integral for the orbital ¢,. For the closed shell orbital g, we have two ex-
pressions depending upon which spin state the ionized molecule is left in.

Swy, = —e, + Hkm|km) (9b)
lw, = —g + $(km|km) (9¢)

for the triplet and singlet case respectively. Here (km|km) is the exchange
integral between the orbitals ¢, and ¢,,.

The outlined procedure has been programmed in FORTRAN IV language
by the author in collaboration with Dr. Torbjérn Alm. The program handles
the excited states by means of configuration interaction where all singly
excited states are taken into account. Of course, this cannot be done for the
general case. It is, however, possible to treat singlet and triplet states arising
from closed shell ground states, and all doublet states occurring, when an
electron is excited from a ground state containing one open shell electron.
Most molecules and complexes fall within this region.

3. CHOICE OF SEMI-EMPIRICAL PARAMETERS

The number of integrals over atomic orbitals occurring in (7) is heavily
reduced by the introduction of the ZDO-approximation. The remaining
integrals are of two types, one-electron integrals occurring in the core matrix
H and two-electron integrals of Coulomb and exchange type. As far as possible
these integrals are treated as semi-empirical parameters to be determined
from measurements on atoms and molecules. For m-electron systems mainly
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three sources of experimental information have been used for this purpose.
Atomic spectra have been used to determine the one-center two-electron
integrals. The one-electron integrals are deduced from the ionization potentials
and UV spectra of certain model molecules. A general scheme for the evalua-
tion of semi-empirical parameters for m-electron systems has been given by
Fischer-Hjalmars.® The lack of experimental information, together with the
increased complexity of the systems, makes this procedure more uncertain for
the transition metal complexes. It is thus, as an example, not possible at the
present stage, to treat the penetration integrals occurring in the diagonal
elements of the core matrix wholly semi-empirically owing to the missing
information on ionization potentials for most transition metal complexes.

3a. Two-electron integrals

The one-center two-electron integrals can in most cases be determined
from atomic spectral data. The integrals are expressed in terms of Slater-
Condon parameters. These are calculated from the energies of different terms
and configurations of the atom under consideration. In some cases the spectral
information is not able to give all the Slater-Condon parameters. For this case
Fischer-Hjalmars 8 has suggested a method in which empirical and theoretically
calculated Slater-Condon parameters are assumed to be proportional. The
proportionality constant is calculated from parameters, which are possible to
obtain from spectra. Another possibility is to include information from ions of
different charges. This has been done in this paper in the application to copper
complexes. However, this method has the disadvantage, that it does not take
into consideration the charge dependency of the two-electron integrals.

In a previous paper ? we have discussed a method for the estimation of the
two-center Coulomb integrals. This method has the advantage, that it does not
necessitate knowledge about the theoretical values of these integrals as other
methods do. The two-center Coulomb integrals between the AO:s ¥, and X,
are expressed in terms of one-center integrals y,, and y, and the distance R
between the orbitals.

Yur(B) = $(yup + vw) f(2) (10)
where f(z) is a function of the parameter z = }(yu, + ym) B.
f2) = 1/(z + ™) (11)

This function was discussed in a previous paper,® where it was applied to
a-orbitals. If the distance R is defined as the distance between the centers of
gravity for the two orbitals the method seems to give appropriate values for
the Coulomb integrals also for other types of orbitals.

3b. One-electron integrals
The one-electron part of the operator (7) has the following form
Heere = T 4 Ueore(Me) + > U (L) (12)
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Here T denotes the kinetic energy operator, Uc~r(Me) the potential field
from the metal core and Ur(L,) the corresponding field from ligand ¢. The
summation is to be taken over all ligands. These ligands can either be atoms
as for example in the metal halogens, dipolar molecules-as water or ammonia,
or Jarger molecular entities as in the metal chelates.

We define the parameter «, as the diagonal matrix element of He* for the
orbital y .

oy = {p|Ho™ | ) (13)
If X, is a metal orbitals this parameter is broken up into three parts.
au(Me) = (u|T + Ucre(Me)|u) — Z' t%"v(i) Yur) + Z <l U%L) | py (14)

The first term in this expression gives the interaction between a metal
electron and the metal core. This interaction can be estimated from ionization
potentials of the metal atom, together with the two-electron integrals deduced
from atomic spectral data. The second and third terms give the interaction
with the ligands. Here 7, is the number of electrons associated with the
atomic orbital X, at ligand 4. Thus the sum of all ny;, for a certain ligand will
give the charge of the core of this ligand. The interaction between a metal
orbital and a ligand core is divided into two parts. In the second term the
ligand core is reduced to zero charge by means of two-electron integrals
according to a method first used by Goeppert-Mayer and Sklar.}® The third
part of (14) represents the penetration between a metal orbital and a neutral
ligand. This integral seems at present to be diffficult to estimate semi-empiri-
cally. The corresponding integrals occurring in the n-electron theory are often
incorporated into the one-center term in (14). The parameter defined in this
way is then determined from molecular ionization potentials. This method could
not be used here because of the lack of experimental information. Some other
way to estimate these integrals must be employed. For neutral molecules they
are small and can probably, at least as a first approximation, be neglected. For
ionic metal complexes, with highly polarized ligands, however, they give an
appreciable contribution to the parameters «;,, and cannot be neglected. One
rather crude way to estimate them in this case, which has been applied in the
applications of the theory made in this paper, is to consider the ligands as
point dipoles.

The core integral a,(; over the ligand orbital »(¢) can be decomposed in the
same way as in (14). We obtain for this case

wi(ly) = EONT + Uer(L)|v()> — En,u Ywriy + ()| U%(Me)|»(3)> —

— 2 2 ) mawy + 2 <v(@) | UL () (15)
iEiv0) i

The ‘‘one-center’” part of (15) is not in this case a purely atomic integral,
since the atom contributing the ligand electrons is not in general isolated but
a part of a ligand molecule. The first term in (15) is therefore not in general to
be determined from atomic ionization potentials, but from properly chosen
molecular ionization potentials. Examples of this will be given in the applica-
tions made later in this paper. The ligand-metal and ligand-ligand interactions
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are as in (14) reduced to zero charge by means of the Goeppert-Mayer, Sklar
technique. The ligand-ligand penetration term can be handled in the same way
as the metal-ligand penetration in (14). In the applications made here the
ligand-metal penetration has been neglected. It is probably small, since the
metal atom is not polarized. However, it should be emphasized that it is
probably a crude approximation to neglect all these terms. Further investiga-
tions on this point are desirable.

The off-diagonal elements of the core matrix, the resonance integrals, are
denoted f,, and given by

ﬂ/w = {u|H>™|v) (n =+ ) (16)

Different methods have been used to treat these integrals, all of them
containing one or more empirical parameters. These parameters are determined
from the spectra of some chosen model molecules. The most frequently used
approximation for transition-metal complexes is the equation introduced by
Wolfsberg and Helmholtz,> where the resonance integral is assumed to be
proportional to the overlap 8y, between the orbitals X, and X,,.

k
ﬂ/w =‘§‘S/4v (W,u + Wv) (17)

where W, and W, are atomic ionization potentials for the orbitals ¥, and %,,
respectively. In the formalism employed here these quantities should be
defined as

Wy = <ulT + U*(Me)|u) (18)

for the metal orbitals and corresponding expressions for the ligand orbitals.
Thus for metal orbitals W, is defined as the valence state ionization potential
of the orbital under consideration and for the ligands as a molecular ioniza-
tion potential. The constant k is an empirical parameter, which sometimes is
given different values for different metal orbitals, when (17) is used in the
Wolfsberg-Helmholtz method. A similar expression for the resonance integral
has been suggested by Ballhausen and Gray,® where the arithmetic mean value
of the ionization potentials is replaced by a geometric mean. It is not easy to
give a theoretical interpretation of these formulas for f,,. It has, however,
been shown by Fischer-Hjalmars ¢ that it is consistent with the ZDO-approxi-
mation to use an expression for f,, not very different from (17).

/3,uv = lS,uv(Ay + 4,) (19)

Thus the proportionality between f,, and Sy, is retained. The entities 4,
and A, are, however, not intimately related to ionization potentials, but
should be treated merely as semi-empirical parameters. This formula was
used in a previous application to m-electron systems® with promising
results. However, since there is one parameter associated to each type of
atomic orbital, a direct application to transition-metal complexes seems to be
difficult to accomplish. Calculations on a series of complexes might, however,
give enough information about the resonance integrals, making it possible to
estimate these parameters. They have ‘“local” character, in the sense given
by the ZDO-approximation, and are therefore transferable from one complex
to another once they have been determined.

Acta Chem. Scand. 20 (1966) No. 6



OPEN SHELL SCF-MO METHOD 1681

4. APPLICATION TO COPPER COMPLEXES

In order to test the formalism discussed in the previous sections we have
applied it to two copper complexes. Since the method later will be applied to
complexes containing copper-nitrogen bonds we have chosen the ionic complex
Cu(NH,)s2* as one of these applications. Discussions of the ligand field spec-
trum of this and similar complexes have been given by Bjerrum et al.! They
used an electrostatic model, where the ligands were replaced by point dipoles.
According to their results the ligand field spectrum can be explained only if
one assumes for the structure of the complex a slightly distorted octahedron
with two of the ammonia molecules at larger distances from the copper ion
(Fig. 1). The spectrum of Cu(NH,):3t was resolved by Bjerrum et al.* into
two absorption bands with frequencies 11 700 cm™ and 15 600 cm™. By means
of these values a numerical value of the parameter k occurring in the resonance
integral (17) has been determined. In order to check this parameter choice
calculations have also been performed on the similar complex Cu(H,0)¢*, for
which the ligand field spectrum has also been analysed.!!

4a. Cu(NH,)2*

The copper nitrogen distance E, in the zy-plane (Fig. 1) was assumed to
be 2.05 A in accordance with measurements on corresponding distances in
crystal structures. The axial distance (R,) is, however, more difficult to
estimate and will be treated as a parameter free for variation in the calcula-
tions. The complex is treated as a 21 electron problem with 9 electrons con-
tributed by the metal and 2 from each of the lone pairs of the ammonia mole-
cules. The atomic orbitals used are the 3d and 4s orbitals of copper and one
sp® hybrid from each nitrogen, altogether 12 orbitals. Usually the 4p orbitals
of the metal atom are also included in the basis set. There are several reasons
not to do this here. The 4p orbitals give only a small contribution to the bond-
ing and they do not affect the ligand field spectra since the MO:s contributing
to this are different in symmetry. Thus the 4p orbitals do not have much
significance for the results discussed here. Furthermore the semi-empirical
parameters evaluated for these orbitals are very uncertain due to missing
experimental information.

The one-center two-electron integrals for the copper orbitals (Table 1)
have been evaluated from the spectra of Cu and Cu™. The spectral data have
been taken from Moore’s tables.’> These integrals are charge dependent and
ought to be determined both from the spectrum of Cu and also from the
spectrum of Cu*. However, the spectral information then becomes incomplete.
Calculations on iron to be published later have shown that the charge depen-
dence is weak. The neglect of this is therefore no serious restriction. In a
previous paper ® a method to calculate two-electron integrals for the elements
C, N, and O was discussed and the integrals for m-electrons were tabulated.
In Table 2 we have collected all other integrals for the valence electron of
these elements, which have been evaluated with the same method. By means of
this table we find the value 17.24 eV for the two-electron integral for the sp®
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Table 1. Two-electran integrals for Cu orbitals in eV.

Coulomb integrals Exchange integrals

J(48,48) = 8.32 | K(48,3d) = 0.22
J(48,3d) = 9.86 | K(z22,x2) = K(2%yz) = 0.55
J(2%2%) = J(2® — yiat — y?) = 17.43 | K(2}vy) = K(24at — ¢?) = 1.10
J(xey,wy) = J(xz,22) = J(yz,yz) = 17.43 | K(xz,yz) = K(ay,yz) = K(zy,xz) = 0.91
J(2txz) = J(2%yz) = 16.33 | K(xz,a? — y?) = K(yz,2? — y?) = 0.91
J(2}wy) = J (222 — y?) = 15.24 | K(xy,x® — y?) = 0.37
J(xz,yz) = J(xy.yz) = J(zy,xz) = 15.60
J (w2t — y?) = J(yz,at — y?) = 15.60

| J(vy,x® — y?) = 16.69

hybrid on nitrogen. The two-center Coulomb integrals are calculated according
to (10) where R is the distance from the center of gravity of the nitrogen sp?
orbital to the metal atom and corresponding distances for the ligand-ligand
interactions.

Table 2. Two-electron integrals for the elements C, N, O in eV.

Elements Cct C (o N+ N N- | O+ (0] (o

J(28,25) = J(23,2p) 12.84 | 11.11 | 9.38 |16.05 | 14.32 [ 12.59 [ 19.27 | 17.54 | 15.81
Jxy) = J(x,z) = J(y,2) |12.34]10.68 | 9.02|15.43|13.77 | 12.11 | 18.52 | 16.86 | 15.20

K(2s,2p) 2.83| 2.59| 2.22| 3.41| 3.06| 2.79| 3.89| 3.66 —

|K(2y) = K(z,2) = K(y2)| 0.75| 0.65| 0.54| 0.93| 0.83] 0.73| 1.12| 1.02| 0.92

The one-electron integrals «(Me) and «(L,) are according to (14) and (15)
divided into three parts, the one-center term, the interaction with other
charges, and the penetration integrals. For the Cu orbitals the first term is
easily evaluated by means of two-electron integrals and the ionization poten-
tials for 4s and 3d respectively. They are found from Moore’s tables 12 to be
7.72 eV for 4s and 10.65 eV for 3d. The “one-center’ term of the ligand para-
meter «(L;) is divided into two parts.

Co@)|T + Uer(L)|o()y = <o@)|T + UH(L)| o(t)> — Yowmow (20)

where o stands for a nitrogen sp® hybrid. The first term in (20), where U +(L)
is the potential from an ammonia molecule with charge plus one, is minus
the ionization potential for a lone pair electron in this molecule. This ioniza-
tion potential has been determined by Joubury and Turner !* and was found
to be 10.16 eV.
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The penetration integrals occurring in (14) and (15) have been roughly
estimated as follows. The ligands were treated as point dipoles, the moments
of which have been calculated as the sum of the permanent moment of NH,
(1.47 D) 4 and the moment induced by a charge of plus two at the metal site.
This last moment has been calculated with use of the polarizability of the
nitrogen atom (1.13 X 10724 cm3).15 The dipole moments found by this method
agree in magnitude with the results obtained by Bjerrum et al.1 by means of
the electrostatic model. As an example the calculated moment at the distance
2.05 A is 4.04 D. The penetration integrals have been estimated as the interac-
tion energies between these dipoles and an electronic charge situated at the
center of gravity of the orbital in question. The penetration integrals found
in this way are of considerable magnitude; as an example, the energy contribu-
tion to a 3d orbital from a planar dipole is 2.89 eV. It must therefore be em-
phasized that the method used here to determine these integrals is crude.
However, the results of interest in this paper, the ligand field spectra, are not
very sensitive to moderate changes in the penetration terms, since they contrib-
ute with energies of the same magnitude to each 3d orbital. They will, how-
ever, be of great importance in discussions of charge-transfer spectra. Fur-
thermore, the special importance of the penetration integrals in ionic complexes
should be. noticed. For neutral complexes they will be smaller and not have the
same influence on the results.

For the determination of the resonance integrals f,, we have used the
Wolfsberg-Helmholtz formula (17), where & is treated as an empirical para-
meter to be determined from the ligand field spectrum. There is no reason to
believe that & should have the same value in this formalism as in the Wolfsberg-
Helmholtz method. The limited information about the complexes studied
here makes it impossible to use the probably more appropriate formula (19).
The overlap integrals needed in (17) must be calculated theoretically. For this
purpose the self-consistent field atomic orbitals for copper published by
Watson !¢ have been used. Slater type orbitals have been used for nitrogen.
With these orbitals we have found the following overlap integrals at the
interatomic distance 2.05 A, § (4s, 0;) = 0.2637, S (2%, ;) = —0.0405, S
(zy, g;) = 0.0701, with g, in the symmetry plane of the complex.

From the six atomic orbitals g, belonging to the ligands L, we can con-
struct symmetry orbitals corresponding to the symmetry group D,, with the
axes as in Fig. 1.

C’p(aqg) = }(oy -+ 05 + 03 + 0y)
1
Oux(ty) = \7“2__(0'5 + 06)
1
aax(azu) = ,\73:(05 - aﬁ) (21)
Up(bzg) = }(0y, — g3 + 03 — 07y)
1 . 1
ole) = /5(01 — 03); 175(02 — 04)
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The MO:s are linear combinations of these symmetry orbitals and metal

orbitals 3d and 4s. In Table 3 the MO:s are given together with the eigenvalues
of the operator (7) for the case R, = 2.25 A. From this table we calculate the

Table 3. Molecular orbitals ¢; and eigenvalues 3, for Cu(NH,)2t, with k = 2.9 and R,; =
2.25 A.

; g, (a.u.) Orbital coefficients

[ lay, —1.1283 0.5733(4s) —0.0543(2%) +0.7134 op(ay,) +0.3993 gax(ay,)
2a,, —0.7609 0.0449(4s) +-0.5618(22) —0.3984 ap(a,,) +0.7237 gax(a,,)
byg —0.7534 0.3907(xy) +0.9205 5p(byg)

€y —0.6801 0p(eu)

Aoy —0.6717 Oax(su)

big —0.6658 (2 — y?)

g —0.6066 (xz), (yz)

3a,g —0.5045 0.0341(4s) +-0.8251(2*) +-0.3020 04(a,,) —0.4783 o,ax(a,,)
s by, * —0.3242 | 0.9205(xy) —0.3907 g, (by)
| 4a,, +0.3739 | 0.8174(4s) —0.0272(z%) —0.4911 op(a;g) —0.2998 g,(ay,)

charge on copper to be - 1.18. The covalency factor of the odd electron in the
orbital b, * is 0.85, a value which seems to be in agreement with the results
obtained from electron paramagnetic resonance measurements on nitrogen
bonded copper chelates by Wiersema and Windle.'” The covalency factors
published by them lie in the range 0.62—0.84. One should expect the corre-
sponding value for Cu(NH;)g2" to be higher on account of the weaker bonding
in this complex.

The spectrum of Cu(NH,),®2™ has been calculated as a function of the
distance R,x from the metal position to the axial nitrogens. All singly excited

z
20000 |-
|
L em-! / =
s (c)
y //
é4"_/—_—’“ 10000 | (o
pd \nu/ x //
%v 4 /
L{———/———Lg Jal
///
Lg £ 1
0.5 1.0

Fig. 2. Ligand field spectrum as a function

of tetragonality for Cu(NH;)2t with & =

2.9. (a): A,; with CL, (b): 4,, without CI,
(c): By and E,.

Fig. 1. Structure of the complexes
Cu(NH,)2t and Cu(H,0)2t. L, —Lg labels
the ligand positions.
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doublet states, constructable from the MO:s found for the ground state, are
taken into account in configurational interaction. In Fig. 2 the ligand field
spectrum is given as a function of a tetragonality parameter 1 defined as

A =1 — (R |Ru)? (22)

The tetragonality parameter varies from zero for octahedral to one for
square planar symmetry. There are three ligand field transitions, 4, (3a,, -
by,*), B, (e, = by,*) and By, (by, — b, *). However, due to the absence of n-
bonding the state B, and %lg are found to be almost degenerate. They are
drawn as one line in the spectrum. These levels are identified with the absorp-
tion band with frequency 15 600 cm™ found by Bjerrum et al. The second
absorption band at 11 700 cm™ is attributed to the state 4,,. Using these
assignments agreement between theory and experiment is obtained with
k = 2.88 and R, = 2.60 A (1 = 0.62). The calculated value of R, is not in
agreement with the tetragonality obtained by Bjerrum et al.!! They found the
tetragonality to be small with 4 around 0.3—0.4. In order to investigate this
point more carefully we have also calculated the cohesive energy in the axial
bonds as a function of the internuclear distance R... This energy is defined
as follows

Ecoh(-Rax) = Eel(Rax) + Ecore(-Rax) - Eel(oo) - Ecore(oo) (23)

The core energy E..(R.x) was calculated as the sum of interactions of the
types, charge-charge, charge-dipole, and dipole-dipole. The cohesive energy
(Fig. 3) shows a shallow minimum at around 2.20 A with a depth of 10 kecal.
This tetragonality is in agreement with the previous results ! discussed above.
However, this result should be interpreted with caution, since the energy
differences occurring in the cohesive energy are of the same order of magnitude
as the uncertainties in the calculations. As is seen from Fig. 3 the cohesive
energy is positive. Thus, there is no net stabilization. However, this corre-
sponds to the vacuum case. The behaviour of the ammonia molecules at large
distances in the solution is diffficult to predict. The calculations on Cu(H,0)s+
indicate, on the other hand, as will be seen later that the higher degree of
tetragonality predicted from the spectrum is correct. It is therefore difficult
to draw any definite conclusions on this point.

The great importance of configurational mixing for the state 4,, should be
noticed (Fig. 2). The interaction between this state and the 4,, state 2a,, —
by, * is strong (21 000 cm™ for R, = 2.25 A) and leads to a considerable de-
crease in energy of 4,,. Most calculations done hitherto have not payed any
attention to this. If configurational interaction had not been included the
obtained degree of tetragonality would have been much lower (A = 0.4).
This might be one of the reasons for the discrepancy with the results of Bjer-
rum et al.

The obtained value of 2.88 for the parameter £ seems to be within the
expected limits. One should expect this parameters to be higher in this forma-
lism than in the Wolfsberg-Helmholtz method, on account of the different
definition of the resonance integral. The parameter k is almost independent of
the degree of tetragonality, and therefore unsensitive to moderate changes in
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20000 -
cm”!
kcal
50 10000
—
05 1.0 0.5 1.0
Fig. 3. Cohesive energy for Cu(NH;)*+ as  Fig. 4. Ligand field spectrum of Cu(H,0)2+
a function of tetragonality (¢ = 2.9). as a function of tetragonality with k =

2.88. (a): 4,, with CI, (b): A,, without CI,
(c): By, (@): E,.

this uncertain parameter. If the states B,, and I, are to fit with the absorption
band at 15 600 cm™ £ varies only from 3 07 to .88 when R,, varies from 2.05
A (octahedral symmetry) to 2.60 A.

4b. Cu(H,0)e*

In order to test the obtained value of the parameter k£ this complex has
also been investigated. The treatment is quite similar to that discussed above,
the only difference being the inclusion of n-bonding. The complex has been
treated as a 29-electron problem with bonding between the metal orbitals
and both the lone pairs of the planar water molecules (1—4), but only with the
o lone pair of the axial molecules (5—6). The o lone pairs have been considered
as sp3-hybrids of oxygen in accordance with the results obtained in an ab ¢nitio
calculation on the water molecule by Ellison and Shull.’® The n-orbitals of the
planar water molecules are supposed to lie in the plane enclosing the four
oxygens. They are then able to form a strong m-bond with the metal orbital
b,,. The axial ligands are too distant for #-bonding to be of importance. Thus
the following four symmetry orbitals must be added to (21) to give the full
basis set in this case:

”p(azg) = Hmy — 7 + 7 — @)

ﬂp(b1g) = %(”1 + 7y + 73 + 7m,) (24)
1

”p(eu) = \/— (my — m); V3 (g — 74)

The metal oxygen distance in the zy-plane is assumed to be 1.97 A, which

is the normal distance in the solid state for bonding of this type. The axial
distance has been varied as in the case of Cu(NH,)g2+.
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Ionization potentials for the water molecule have been given by Joubury
and Turner.!® The two lowest potentials are found to be 12.61 eV and 14.23
eV. They have been attributed to the z lone pair and the ¢ lone pair, respec-
tively, and used to determine the matrix elements (20).

Table 4. Molecular orbitals ¢; and eigenvalues i, for Cu(H,0):t+, with & = 2.88 and Rax =
2.40 A.

; g,(a.u.) Orbital coefficients
la,, —1.3292 0.5408(4s) —0.0887(2%) +0.7772 gp(a,;) +0.3093 g,5(ay,)
by —0.9554 | 0.3331(zy) +0.9429 0, (by,)
20, —0.8850 | 0.0644(4s) +0.3583(2%) —0.3478 5p(a,,) +0.8640 0ax(ay,)
le, —0.8848 Gp(ey) .
1b,, —0.8555 0.4113(* — y*) +0.9114 7, (by,)
Agy —0.8383 Oax(@ay)
2e,, —0.8282 7tp(€u)
Ayg —0.8262 Ty (Asg)
2b,* | —0.7061 0.9114(x* — y?) —0.4113 7y(by,)
g —0.6696 (z2), (yz)
3a,, —0.6092 | 0.0746(4s) +0.9279(z*) +0.1804 6y(a,,) —0.3178 0a3(ay,)
bye* —0.3938 | 0.9429(zy) —0.3331 0, (by,)
4a,, 0.3203 0.8354(4s) —0.4924 0,(a,,) —0.2385 gax(ay,)

Molecular orbitals and eigenvalues are found in Table 4. The net charge on
copper is found to be 4 1.20 and the covalency factor is 0.89.

The absorption spectrum of Cu(H,0)42* has also been analyzed by Bjerrum
et al.®' They found two absorption bands with maxima at 9400 cm™ and
12700 cm™?, respectively. If the first transition is attributed to the 4, state
the axial distance is found to be 2.43 A with k = 2.88 (Fig. 4). With this value
of B, the states B,, and E, are expected to absorb at the frequencies 12 010
cm™ and 13 760 cm 1. The mean value of these energies is 12 890 cm™ which
is in agreement with the observed peak at 12 700 cm™. Also in this case the
tetragonality is unexpectedly high.

It is interesting to compare the spectrum in Fig. 2 with the spectrum of
CuS0,(H,0); which has been discussed by Holmes and McClure.!® In that case
the copper atom is surrounded by four water oxygens at a distance of 1.98 A
and two sulfate oxygens at an average distance of about 2.40 A20, The sym-
metry is the same as that of Cu(H,0)22*. An attempt was made by Holmes
and McClure '* to resolve the ligand field spectrum of the complex into three
absorption bands. The best fit to the observed absorption curve was obtained
with the frequencies 10 500 cra™, 13 000 cm™, and 14 500 cm™. If we, in
accordance with Fig. 4, assign these frequencies to the states 4,,, B,,, and B,
and choose R,, = 2.5 A we obtain the frequencies 10 500 cm™, 12 200 cm™,
and 14 000 cm™. It is interesting to notice that the axial distance calculated
in this way is in rather good agreement with experiment. Thus it might be
possible to give some significance to the tetragonalities found for Cu(NH,)e?*
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and Cu(H,0)s2*. It should, however, be noticed, that the resolution made by
Holmes and McClure ! is rather uncertain and, further, that the sulphate
oxygens are not quite similar to the water oxygens. Holmes and McClure 1°
suspected that the 4, state might absorb at lower frequencies. They therefore
studied the absorptlon of CuS0,(D,0); down to 4000 cm™. They found no
absorption bands in this region. Therefore they concluded that the A,, state
should be one of the three bands localized in the near infrared reglon in
agreement with our results.
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