The Indication of Coplanarity in 3-Phenylpyridazines by NMR

INGOLF CROSSLAND

Department of Organic Chemistry, The Technical University, Copenhagen, Denmark

The phenyl and pyridazine rings of 3-methoxy-6-phenylpyridazine (I) appear to be coplanar as indicated by the NMR spectrum of I (Table 1). The interpretation of the spectrum is confirmed by comof the pyridazine ring is subject to nearly the same shift ($\Delta \delta = 0.72$ ppm for compound II) by the phenyl group. The coupling constants of some of the protons may be derived from the spectrum of I and II (H4 and H5 of the pyridazine ring) and of III and IV (CH₃ of the pyridazine to H⁴ or H⁵). They are in accordance with values given elsewhere.1

The introduction of an alkyl group at position 5 in the pyridazine nucleus forces the two rings out of plane. The effect is illustrated by the NMR spectrum of 3methoxy-5-methyl-6-phenylpyridazine (IV)

Table 1.4

Compound	Phenyl (<i>ortho-</i> hydrogen)	Phenyl (meta and para)	Pyridazine			Methyl or
			H4	H^5	3-Methoxy	t-butyl
I	7.87 - 8.09	7.30 - 7.51	$6.92^{\ b}$	7.66 b	4.16	_
II	7.80; 7.94	7.13; 7.27	6.91^{b}	$7.63^{\ b}$	4.15	2.36
III	7.82 - 8.02	7.30 - 7.45		7.47 °	4.17	2.22^{d}
IV	ca. 7.38 °		6.71 c		4.16	2.26^{d}
. V	ca. 7.36 f		6.95	_	4.16	1.16
VI	7.86 - 8.13	7.35 - 7.56		7.62	4.24	1.42

^a The spectra were taken on a Varian A-60 spectrometer at room temperature. The compounds (100 to 150 mg) were dissolved in deuterochloroform (500 μ l) and the δ -values were partly measured from TMS (internal standard; methoxy, methyl and t-butyl) and partly from chloroform (internal standard, δ for $HCCl_3 = 7.27$; aromatic protons). $^bJ_{45} = 9.6$ cps. c Partially resolved quartets, J = 1.0 cps. d Doublet, J = 1.0 cps. d Half-width ca. 4 cps. f Half-width 1.5 cps. In all instances the integral values were in accordance with the number of protons.

parison with the spectra of 3-methoxy-6-ptolylpyridazine (II) and 3-methoxy-4-methyl-6-phenylpyridazine (III), cf. Table 1. The two ortho hydrogen atoms of the

phenyl group are seen to be displaced (anisotropic effect of the pyridazine ring; $\Delta \delta = 0.67$ ppm for compound II) towards lower field and, correspondingly, the H5

in which the two sets of maxima ascribed to the 5 protons on the phenyl group collapse to a group of nearly fused peaks. The corresponding 5-t-butyl compound shows the same effect; in the latter case, however, the signals from the phenyl group are even less resolved and form one large peak (the half-width being reduced from 4 to 1.5 cps).

As expected, the introduction of a methyl group (III) or even a t-butyl group (VI) in the 4-position of the pyridazine nucleus does not inhibit the coplanarity of the two rings. This is indicated by the splitting of the phenyl protons and the shift of the 5-proton to $\delta = 7.62$, cf. Table 1.

The compounds were prepared according to or in analogy with published methods.2,3

- 1. Tori, K., Ogata, M. and Kano, H. Chem. Pharm. Bull. (Tokyo) 11 (1963) 235.
- 2. Oppenheim, A. Ber. 34 (1901) 4227.
- 3. Crossland, I. and Rasmussen, L. K. Acta Chem. Scand. 19 (1965) 1652.

Received November 26, 1965.

Acta Chem. Scand. 20 (1966) No. 1