The Crystal Structure of Tellurium Bis (dimethyldithiophosphate) #### STEINAR HUSEBYE Chemical Institute, University of Bergen, Bergen, Norway The crystal structure of tellurium bis(dimethyldithiophosphate) has been determined, and refined by three-dimensional X-ray methods. The crystals are built up of $(CH_3O)_2P(S)-S-Te-S-(S)P(OCH_3)_2$ molecules, with tellurium atoms on twofold symmetry axes. The molecule contains a P-S-Te-S-P chain in the trans form, with a STeS/TeSP dihedral angle of 90.7°. Other molecular dimensions are $Te-S_2=2.44$ Å, $P-S_2=2.09$ Å, $P-S_1=1.92$ Å and $\angle S_2-Te-S_2'=98.3°$. The molecules are joined together in layers by weak intermolecular $Te\cdots S_1$ bonds of length 3.31 Å. Each tellurium atom participates in two such bonds at a S-Te-S angle of 85.5° As these weak bonds. two such bonds at a S-Te-S angle of 85.5°. As these weak bonds are *trans* to, and nearly collinear with the Te-S₂ bonds, there is a tendency to square-planar coordination around tellurium. This structure determination is part of a study of compounds of divalent tellurium and selenium with dithio anions. The main objective is to investigate the configuration around the tellurium and selenium atoms. From analogy with square-planar divalent tellurium complexes studied by Foss et al., and with square-planar nickel(II) complexes with dithio anions, a tendency to square-planar configuration around the central tellurium or selenium atom appeared possible also in compounds of divalent tellurium and selenium with dithio anions.1 ## CRYSTAL DATA Preparation, and unit cell and space group data for tellurium bis(dimethyldithiophosphate), Te[(CH₃O)₂PS₂]₂, have been reported earlier. The crystals are orthorhombic with a = 10.37 Å, b = 11.51 Å, c = 12.56 Å, Z = 4; space group D_{2h}^{14} -Pbcn. The accuracy of the cell constants is probably within 0.5 %. The molecules possess, by space group requirements and systematic weak reflections, a twofold axis of symmetry passing through the tellurium atom. For the structure determination, intensities of 0kl, 2kl, 4kl, hk0, hk1, and hk2 reflections were estimated visually from integrated zero-layer and equi-inclination Weissenberg photographs. $CuK\alpha$ radiation was used for all layers. The cross-sections of the crystals used were about 0.08×0.08 mm². The crystals appeared to decompose very slowly with liberation of tellurium when exposed to X-rays for a while; this, however, did not appear to impair the quality of the X-ray photographs. 644 out of 822 accessible reflections with $\sin\theta < 0.985$ were observed and measured. They were corrected for Lorentz and polarization factors, but no absorption correction was applied to the data. The least squares refinements were carried out on an IBM 1620 computer, using a program by Mair.³ The weighting scheme No. 3 in this program, was applied in the refinement. #### STRUCTURE ANALYSIS As the twofold axis through the tellurium atom is parallel to the b axis, only the y coordinate of this atom is unknown. A Patterson projection along the c axis gave this coordinate. Subsequent Fourier refinements of the projections along the a and c axes and use of a model of the dimethyldithiophosphate anion a yielded the positions of the lighter atoms. Further refinement by (F_o-F_c) syntheses greatly improved the structure and led to entirely new positions for two of the light atoms. At the end, temperature factors were assigned to the different types of atoms. The observed structure factors from all layers were then brought to a common scale by comparison with the calculated values. All the unobserved reflections were removed from the material. Reflections common to two layers were removed from the data obtained by a-axis rotation. These, rather than common reflections from c-axis rotation were removed because of the higher observed intensities of the latter. The crystal structure was further refined by means of successive least squares refinements based on the remaining material. Anisotropic temperature factors were used for tellurium, sulphur, and phosphorus. The reflections 002, 020, 023, 221, 404, 110, 310, 112, and 102 which had consistently much higher calculated than observed values, were removed from the data after the fifth cycle, as this effect was attributed to secondary extinction. After this cycle, the observed structure factors for the different layers were rescaled in relation to each other by comparison with the calculated values. After the twelfth and final least squares refinement cycle, the reliability index $R = \sum ||F_o| - |F_c||/\sum |F_o|$ had converged to 0.080. A final structure factor calculation using the parameter output from the last refinement, was then made for all reflections with $\sin\theta < 0.985$, except the common reflections removed earlier. The R-value for this material with non-observed reflections included only when F_c exceeds the observable limit, is 0.088. The final observed and calculated structure factors are listed in Table 1. The calculated values are based on atomic scattering factors for tellurium by Thomas and Umeda, for sulphur by Dawson, for phosphorus by Freeman and Watson, and for oxygen and carbon by Hoerni and Ibers. Table 1. Observed and calculated 0kl, 2kl, 4kl, hk0, hkl and hk2 structure factors for tellurium bis(dimethyldithiophosphate). The absolute values are multiplied by a factor of five. | H K L | FO FC | |--|---|---|---|--|---|---|---| | 0 0 2
0 0 4
0 0 6
0 0 8
0 0 10
0 0 12
0 0 14 | 1152 -1728
177 - 261
137 - 411
598 - 596
120 - 91
148 - 153
261 - 286
944 1100 | Z 5
Z 6
Z 7
Z 8
Z 9
Z 10
Z 11
Z 12
Z 13
Z 14 | 286 278 398 364 < 74 - 461 306 - 261 189 - 156 123 - 134 < 95 - 44 203 215 106 110 < 87 - 2 | 2 8 3
2 8 4
2 8 5
2 8 6
2 8 7
2 8 9
2 8 10
2 8 11
2 8 12 | 225 - 188
335 - 284
206 - 192
236 - 231
154 - 116
208 - 213
< 91 - 19
135 - 123
78 - 44 | 4 2 19
4 3 3
4 3 4
4 3 5
4 3 6
4 3 7
4 3 8
4 3 9 | 115 131 161 162 184 168 < 73 59 < 80 69 < 86 57 < 993 6 < 997 61 < 99 30 < 98 19 < 92 16 | | 0 Z 5
0 Z 6
0 Z 7
0 Z 8
0 Z 9
0 Z 10
0 Z 11 | 965 -1042
789 276
565 499
189 -156
483 -461
80 64
470 500 | Z 1 15
Z 2 3
Z 2 4
Z 2 5
Z 2 6
Z 2 7
Z 2 8 | ₹ 77 29 695 791 188 - 151 484 - 497 276 - 271 389 386 428 430 | 2 6 13
2 9 3
2 9 4
2 9 5
2 9 6
2 9 7 | 67 64 205 - 158 95 77 228 - 200 < 95 22 192 167 100 114 | 4 3 11
4 3 12
4 3 13
4 3 14
4 4 4
4 4 5 | 82 94
85 96
105 107
453 424
193 184 | | 0 2 13
0 2 14
0 2 15
0 4 3
0 4 4
0 4 5
0 4 6
0 4 7 | 224 - 226
< 76 40
< 67 11
257 - 207
699 - 711
321 - 261
631
555 599 | 2 2 12
2 2 13
2 2 14
2 2 15 | 252 - 212
267 - 233
200 157
< 94 42
217 - 210
< 85 13
169 199
341 - 303 | 2 9 8
2 9 9
2 9 10
2 9 11
2 9 12
2 10 3
2 10 4
2 10 5 | 130 118
< 86 44
127 - 110
100 - 126
305 273
286 253
317 - 294
147 - 128 | 4 4 6
4 4 7
4 4 9
4 4 10
4 4 11
4 4 12
4 4 13 | 409 373
241 227
460 - 468
394 - 415
355 369
278 287
132 - 130
< 87 35
< 75 75 | | 0 4 8
0 4 9
0 4 10
0 4 11
0 4 13
0 4 14
0 4 15 | 355 - 321
274 - 241
251 211
< 82 51
331 - 32
129 - 141
218 221
< 57 2 | Z 3 4
Z 3 5
Z 3 6
Z 3 7
Z 3 8
Z 3 9
Z 3 10 | 231 - 217
147 - 153
613 647
129 118
< 85 70
124 122 | 2 10 7
2 10 8
2 10 9
2 10 10
2 10 11 | 225 192
< 88 26
182 - 157
< 81 - 3
147 155
151 - 126
102 92 | 4 5 3
4 5 4
4 5 5
4 5 6
4 5 8
4 5 9 | 175 ~ 156
< 80 - 48
174 138 | | 0 6 3
0 6 4
0 6 5
0 6 7
0 6 8
0 6 9
0 6 10 | 357 - 306
680 - 696
178 156
<73 - 26
415 - 43
337 317 | 2 3 14
2 3 15
2 4 3
2 4 4 | 95 - 102
< 93 - 27
< 91 - 14
98 < 69 5
496 493
655 - 675
206 - 167
532 542 | 2 1 4
2 1 5
2 1 6
2 1 7
2 1 8
2 1 9
2 1 10
2 12 3
2 12 4 | 143 - 131
190 - 184
86 73
< 84 - 24
106 95
77 89
-148 124
137 - 110 | 4 5 10
4 5 11
4 5 12
4 5 13
4 5 14
4 6 3
4 6 4
4 6 5 | 99 - 118
4 93 - 21
4 92 - 0
4 82 - 105
6 5 17
745 - 739 | | 0 6 11
0 6 12
0 6 13
0 6 14
0 8 3
0 8 4
0 8 5 | | 2 4 11
2 4 12
2 4 13
2 4 14 | 205 - 179
359 - 349
240 190
272 245
< 95 - 20
211 - 220
90 - 77
156 160 | 2 12 4
2 12 5
2 12 6
2 12 7
2 12 8
2 13 3
2 13 5
2 13 6
2 13 7 | 198 189
159 142
216 228
160 153
< 80 29
< 78 13 | 4 6 6
4 6 7
4 6 8
4 6 9
4 6 10
4 6 11
4 6 12
4 6 13 | 133 78 537 518 218 192 103 - 74 255 - 258 < 96 - 6 181 - 176 < 88 14 168 185 | | 0 8 6
0 8 7
0 8 8
0 8 9
0 8 10
0 8 11
0 8 12
0 8 13 | 431 - 40
359 - 37
407 - 40
204 - 21
409 - 43
69 - 3
239 - 24 | 2 5 3
2 5 4
2 5 5
2 5 6 | 93 101 333 - 290 117 120 290 - 291 < 81 - 36 207 183 < 91 - 46 206 183 | 2 13 5
2 13 6
2 13 7
2 14 3
2 14 4 | 267 0
52 19
128 - 108
131 - 150 | 4 7 3
4 7 4
4 7 5
4 7 6
4 7 7
4 7 8
4 7 9
4 7 10 | 254 - 209
162 - 139
< 95 - 2
166 155
< 99 45
< 99 65
< 99 45
< 91 - 36 | | 0 10 3
0 10 4
0 10 5
0 10 6
0 10 7
0 10 8
0 10 9 | 250 19 166 13 285 - 23 285 - 28 254 22 336 34 <76 - 3 245 - 23 | 2 5 10
2 5 11
2 5 12
2 5 13
2 5 14 | 295 - 40 124 - 109 2 92 - 61 386 - 51 77 - 360 188 - 162 | 4 0 8
4 0 10
4 0 12
6 0 14 | 147 - 75
329 - 310
351 392
144 - 148
209 - 190
300 272
139 - 116 | 4 7 10
4 7 11
4 7 12
4 7 13
4 8 3
4 8 4
4 8 5
4 8 6 | <pre>< 99</pre> | | 0 10 11
0 12 3
0 12 4
0 12 5
0 12 6
0 12 7
0 12 8 | 398 36
264 - 21
294 - 27
91 5
< 68 - 1
60 - 3 | 2 6 5
2 6 6
2 6 6
2 6 8
2 6 9
2 6 10
2 6 10
2 6 12 | 468 465
348 338
518 525
312 323
457 461
214 196
281 300 | 4 1 6
4 1 7
4 1 8
4 1 9
4 1 10
4 1 11
4 1 12 | 74 | 4 8 7
4 8 8
4 8 9
4 8 10
4 8 11
4 8 12 | | | 0 12 9
0 14 3
0 14 4
2 0 4
2 0 6 | 65 4
< 58
< 52 1
674 70
897 - 90 | 2 6 14
5 2 7 3
2 7 4
2 7 5
5 2 7 6 | 159 146 < 66 49 < 82 48 199 17 122 99 < 91 - 51 133 116 | 4 1 15
4 2 3
4 2 4
4 2 5
4 2 6 | 139 192 664 21 303 284 239 217 534 - 546 118 - 97 778 843 | 4 9 4
4 9 5
4 9 6
4 9 7
4 9 8
4 9 10 | 143 ~ 139
< 99 27
105 96
< 95 35
93 - 88
< 91 ~ 15
< 84 - 10
< 73 ~ 31 | | 2 0 8
2 0 10
2 0 12
2 0 14
2 1 3
2 1 4 | 831 85
566 - 60
296 30
115 - 10
161 12
161 - 16 | 7 2 7 8
2 7 9
3 2 7 10
5 2 7 11
2 7 12
1 2 7 13 | 133 116
< 95 29
119 - 120
< 92 - 41
(39 - 131
< 85 - 34
100 99 | 4 2 8
4 2 9
4 2 10
4 2 11
4 2 12 | 203 - 151
537 - 567
192 144
229 232
103 95
192 - 186
144 - 143 | 4 10 3
4 10 4
4 10 5
4 10 6
4 10 7
4 10 8 | 333 307
215 194
155 - 127
209 - 202
< 92 58
197 188 | | H K L | FO | FC | H K L | ro | FC | нкь | ŧ 0 | FC | нкь | £0 | FC | |--|--|-------------------------------------|--|-------------------------------------|--------------------------------|---|---------------------------------|--------------------------------|---|---|---| | 4 10 9
4 10 10 | 169
158 | - 159
- 166 | 10 Z 0 | 796
180
79 | 304
- 16Z
- 97 | 6 Z !
6 3 I | 6/3 | - 72Z
- 136 | 1 13 Z
1 14 Z | 165 | 228
80 | | 4 11 3 | < 93 | - 25
- 106
- 94 | 10 6 0 | 257 | 242 | 6 4 1 6 5 1 | 487
288
259 | - 469
- 261
243 | Z 0 2
2 1 2 | 35Z | - 343
109 | | 4 4
4 5
4 6
4 7
4 8
4 9 | 115
105
110
87 | 100 | 11 1 0
11 3 0
11 5 0 | 494
81
174 | 537
- 89
- 149
20 | 6 7 1 | < 58
133
117 | - 48
113 | 2 2 2 2 2 3 2 | 352
131
244
753
638 | 109
221
792
682 | | 411 9 | < 80
< 65 | - 1
40 | 11 7 0 | < 36 | | 6 9 1
6 10 1
6 11 1 | 734
64 | - 265
- 51 | 2 0 2
2 1 2
2 3 4 2
2 3 4 2
2 5 6 2
2 6 7 2
2 9 2
2 10 2
2 11 2
2 12 2
2 13 2
2 14 2 | 62
77 | - 62
- 55
- 181 | | 4 12 3 | 155 | 132 | 12 0 0
12 2 0
12 4 0
12 6 0 | 141
< 44
237 | 129
15
- 229 | 6 11 1 6 12 1 6 13 (| < 33 | 56 | 2 7 2
2 8 2
2 9 2 | 182
541
252 | - 181
- 576
- 259 | | 4 12 3
4 12 4
4 12 5
4 12 6
4 12 7 | 86
154 | - 65
158 | 12 6 0 | 97
56 | - 105
54 | 7 !
7 2 !
7 3 | 384
87 | - 408
- 67
- 124
- 31 | 2 10 2 2 11 2 2 12 2 | 541
252
337
142
117 | - 351
136 | | | 143
< 78 | 151 | | | | 7 4 1 | < 55
540 | 541 | 2 13 2
2 14 2 | < 61 | 126
4
177 | | 4 13 3
4 13 4
4 13 5 | < 78
< 73
100 | - 13
- 122 | 0 2 1
0 4 1
0 6 1 | 233
154
994
579 | - 196
- 111
1092 | 7 6 !
7 7 !
7 8 !
7 9 ! | 371 | - 114
360
- 157 | 3 0 Z | 904
861 | - 920
- 951 | | 0 2 0
0 4 0 | 879
737 | 1027 | 0 6 1 | 579
342
152 | 596
- 353
- 156 | 7 7 1
7 8 1
7 9 1
7 10 1
7 11 1
7 12 1 | 163
< 56
54
296
52 | - 157
- 23
- 62
- 334 | 3 | 186
217
72 | - 182 | | 9 6 0 | 219
183 | - 718
- 184
- 130 | 0 14 1 | 61 | 76 | | | | 3 5 2
3 6 2 | 688
294 | 203
- 23
709
- 252
52
- 9 | | 9 6 0
0 8 0
0 10 0
0 12 0
0 14 0 | 108
151
245 | 100
- 141
- 285 | 1 1 1
1 2 1
1 3 1 | 551
162
453
75 | - 678
123
- 454 | 8 1 1
8 2 1
8 3 1 | 81
389
< 57 | - 57
- 380
0 | 3 7 2
3 8 2
3 9 2 | 688
294
102
< 65
282 | - 278 | | 1 1 0 | 521 | 608 | 1 6 1 | 75
537
241 | - 68
533
219 | 8 4 1 | 225
< 59
349
81 | - 199
5
345
- 79 | 3 10 2
3 11 2 | < 0/ | - 105
- 64
- 85 | | 1 3 0
1 5 0
1 7 0 | 186
450
359 | - 433
340 | 1 7 1 | 531
246 | 528
224 | 8 7 1 | 229 | 235 | 3 13 2
3 14 Z | 68
154
62 | 194 | | 1 5 0
1 7 0
1 9 0
1 11 0
1 13 0 | 576
86
229 | 613
- 74
- 246 | 1 10 1 | < 59
186 | - 196 | 8 9 1
8 10 1
8 11 1 | 62
178
89 | - 39
- 167
- 85 | 4 0 2
4 1 2 | 908
377
188 | - 963
- 372
- 155 | | 200 | 202 | . 163 | 1 12 1 | < 59
186
< 55
< 52
< 45 | - 196
- 48
- 21
Z | 9 1 1
9 2 1 | 34 f
89 | - 334
70
- 478 | 4 1 2
4 2 2
4 4 5 2
4 6 7 2
4 8 2
4 9 2
4 10 2 | 188
168
648 | - 155
- 136
643 | | 2 4 0 | 69
649
74 | - 668
- 69 | 7 1 1 | 254 | - 266 | 931 | 491
195
72 | - 191 | 4 5 2
4 6 2 | 289
317 | - 282
253 | | 2 6 0
2 8 0
2 10 0
2 12 0
2 14 0 | 736
399
140
158 | 785
391
- 153 | 2 2 1
2 3 1
2 4 1 | 1119
363
507 | -1418
322
- 508 | 9 6 1 | 64
298 | - 45
304 | 4 7 2
4 8 2
4 9 2 | 82
268
191
177 | - 260
175
- 170 | | 2 14 0 | | - 153
- 181 | 2 5 1
2 6 1
2 7 1 | 371
344
140 | - 508
354
357
- 124 | 9 4 1
9 5 1
9 6 1
9 7 1
9 8 1
9 9 1 | < 55
61
65 | - 5
39
- 76 | 4 0 2
4 1 2
4 3 2 2
4 5 2
4 5 2
4 6 2
4 7 7 2
4 10 2
4 11 2
4 12 2 | < 65
142 | - 170
24
149
51 | | 3 3 0 | 976
591
643
144
119 | - 601
- 639 | 2 6 1
2 7 1
2 8 1
2 9 1 | 289
197 | 290
184 | | 04 | | • | < 55 | | | 3 9 0 | 144
119
< 57 | - 119
91
40 | 2 9 1
2 10 1
2 11 1
2 12 1
2 13 1 | 132
156
110 | - 120
150
- 119 | 10 1
10 2
10 3
10 4
10 5 | 266
< 57
142
57 | ~ 88
- 267
- 18
 116 | 5 0 2
5 1 2
5 2 2 | 401
267
162 | 381
- 252
- 135 | | 3 13 0 | 192 | - 205 | 2 12 1
2 13 1
2 14 1 | < 52
139 | - 13 | 10 6 1 | 57
394
54 | 40
408
- 62 | 5 2
5 2 2
5 3 2
5 4 2
5 5 2
5 6 2
5 7 2 | 267
162
455
73 | - 252
- 135
- 430
- 64
- 452 | | 4 0 0
4 2 0
4 4 0
4 6 0 | 349
129
715
661
355
153 | 318
111
- 754
- 647
345 | 3 1 1
3 2 1
3 3 1
3 4 1 | 381
184
596 | - 378
166
- 637 | 10 8 1 | 394
54
220
< 41 | 230
18 | 5 6 2 | 199
250 | - 227 | | 4 6 0
4 8 0
4 10 0
4 12 0 | 661
355
153 | - 647
345
159 | 3 5 1 | 152
217 | - 141
198 | 11 1 1 | 130
91 | - 111
67 | 5 8 2
5 9 2
5 10 2 | 176
439
< 67 | - 168
- 466
43 | | 4 1Z 0 | 229
75 | - 230
27 | 3 6 1 | 211
580
200 | 157
602
180 | 11 2 1
11 3 1
11 4 1
11 5 1
11 6 1 | 163
107
196 | - 162
109
184 | 5 0 2
5 1 2
5 2 2
5 4 2
5 5 6 2
5 7 2
5 10 2
5 11 2
5 12 2
5 12 2 | < 67
79
95
143 | - 466
43
- 75
101
174 | | 5 1 0
5 3 0
5 5 0
5 7 0 | 927
587
266 | - 984
- 568 | 3 9 1 | 143
< 59
337 | - 126
10
- 378 | 11 6 1 | 107
196
64
300
53 | 46
353
54 | | | - 534
Z15 | | 5 1 0
5 3 0
5 5 0
5 7 0
5 9 0
5 11 0
5 13 0 | 266
428
162 | 219
417
182 | 3 6 1
3 9 1
3 10 1
3 11 1
3 12 1
3 13 1
3 14 1 | 102
70
58 | - 378
- 115
- 56
- 83 | | 5.0 | 58 | 6 0 2
6 1 2
6 2 2
6 3 2
6 4 2
6 5 2
6 6 7 2
6 8 2
6 10 2
6 11 2 | 534
234
90
417 | - 62
371 | | | 143 | - 144
342 | 3 4 | 58
263 | 83
232 | 12 | 361
< 50
127
42
120 | - 367
27
- 112 | 6 2 2
6 3 2 2
6 5 2
6 6 7 2
6 8 2
6 10 2 2
6 11 2 2 | 534
< 63
236
< 68
344
< 68
214
140 | - 62
371
517
15
201
- 20
- 333
42
- 204 | | 6 2 0 | 376
283
655
196 | - 265
- 636 | 4 2 1 | 552
141 | - '565
121 | 12 3 1
12 4 1
12 5 1
12 6 1 | 120 | 134 | 6 7 2
6 8 2 | < 68
344 | - 20
- 333 | | 6 0 0
6 2 0
6 4 0
6 6 0
6 8 0
6 10 0
6 12 0 | 245
235 | 209
221 | 4 4 1
4 5 1
4 6 1
4 7 1
4 8 1 | 318
63
536
175 | 262
57
525 | 13 1 1 | 148
< 34 | - · 169
- 23 | 6 6 2
6 7 2
6 8 2
6 10 2
6 11 2
6 12 2 | 214
140 | - 204
- 143
123 | | | 82 | - 83
493 | 4 7 1 | 175
106
< 59 | 157
60
18 | 0 Z Z | 670 | - 732 | | | | | 7 1 0
7 3 0
7 5 0
7 7 0 | 503
< 52
674
< 58 | - 697 | 4 10 1
4 11 1
4 12 1 | 317
< 56 | - 337
48
- 377 | 0 4 Z
0 6 Z
0 B Z | 634 | 677
584
134
82 | 7 1 2 7 2 2 7 3 2 | 346
552
224
257
176 | 313
558
192
226
153 | | 7 7 0 7 11 0 | 295
167 | - 38
316
- 162 | 4 13 1 | 326
< 48 | 36 | 0 10 2
0 12 2 | 149
96
192 | 222 | 7 0 2
7 1 2
7 2 2
7 3 2
7 4 2
7 5 2 | | 153
402 | | | | 763
110 | 5
5 2
5 3 | 523
220
878 | - 524
- 213
-1011 | | 96
708 | 113
- 908 | 7 6 Z
7 7 Z | 200
< 69
< 68
179
< 65
< 58
< 45 | 402
195
- 20
41
- 179
- 30
36
- 13 | | 8 0 0
8 Z 0
8 4 0
8 6 0
8 8 0
8 10 0 | 711
134
411
< 58
172 | - 384
- 21
181 | 5 4 1
5 5 1
5 6 1 | 252
312 | 216
- 259
- 10 | 1 2 2 1 3 2 | 455
415 | - 564
- 401 | 7 6 2
7 7 2
7 8 2
7 10 2
7 11 2
7 12 2 | 179
< 65
< 58
< 45 | - 179
- 30 | | | 133 | 145
328 | 571 | < 52
310
< 58 | 2A9
- 33 | 1 4 2 | 557
177
551 | 564
- 186
553 | | | | | 9 1 0
9 3 0
9 5 0 | 314
179
194
233
377 | - 151
- 172 | 5 8 1
5 9 1
5 10 1
5 11 1 | < 58
172
89
273 | - 155
89
- 295 | 1 6 2
1 7 2
1 8 2 | 219
255
205 | - 179
- 245
191 | 8 0 2
8 1 2
8 2 2 | 489
187
139
102 | - 502
152
- 106
73 | | 9 3 0
9 5 0
9 7 0
9 9 0 | 233
377 | 213
382 | 5 1Z 1
5 13 1 | 82
< 44 | - 89
30 | 1 8 2
1 9 2
1 10 2
1 11 2
1 12 2 | 444
129
68
< 64 | - 465
127
- 48 | 8 3 Z
8 4 Z | 411 | 73
405
168 | | 10 0 0 | 531 | 542 | 6 1 1 | 114 | 79 | 1 12 2 | < 64 | 32 | 8 5 2
8 6 2 | 187
725 | 196 | | | . K | | L | FO | FC | н | K | L | FO | | FC | н | ĸ | L | FO | FC | н | ĸ | Ł | FO | FC | |---|------------|-----|---|------|-------|----|---|---|------|-----|-----|------|---|---|------|-------|----|---|---|-------|-------| | | , | , , | , | 83 | 90 | 9 | 6 | 2 | 117 | - 1 | 118 | 10 | 6 | 2 | 132 | 114 | | 7 | z | < 51 | 6 | | | | | | 240 | - Z54 | • | 7 | ž | 176 | - 1 | 162 | 10 | 7 | 2 | < 62 | - 23 | | | | | | | | | | | < 65 | 51 | | | | 137 | - 1 | 110 | 10 | 8 | 2 | 165 | - 152 | 12 | ٥ | 2 | 181 | - 188 | | | | | | 161 | - 172 | | ĕ | | 291 | - 3 | | 10 | 9 | Z | 115 | - 126 | 12 | | 2 | 193 | - ZOZ | | | | | | 73 | 72 | | | ž | ₹ 49 | _ ` | | | | - | | | 12 | Z | 2 | < 59 | 26 | | ۰ | • • • | • | • | | | • | | - | , | | • | - 11 | ٥ | Z | 166 | - 140 | 12 | 3 | 2 | 97 | ~ 85 | | | | : | • | < 69 | 4 | 10 | ٥ | 7 | 411 | - 4 | .28 | ii | • | ž | 352 | - 342 | 12 | 4 | 2 | Z44 | 248 | | | | | | 204 | - 184 | | ĭ | | 93 | | 84 | - 11 | 2 | 2 | 173 | - 172 | 12 | 5 | Ž | 109 | - 128 | | | | . ; | | 229 | 226 | | ż | | 105 | _ | | 11 | 3 | 2 | 105 | 90 | | - | _ | | | | | | | | 300 | 264 | | 3 | | 85 | - | | - 11 | ä | | 115 | - 98 | 13 | ٥ | 2 | ·< 42 | 30 | | | | | | 87 | 74 | | 4 | | 294 | | 294 | - 11 | | ž | 275 | 277 | 13 | | ž | .115 | - 136 | | | | | | 102 | 288 | | - | | 87 | | 60 | - 11 | | | 57 | - 23 | 13 | | | 49 | - 65 | Table 2. Final atomic coordinates for tellurium bis(dimethyldithiophosphate), in fractions of cell edges. Origin at a centre of symmetry. | | \boldsymbol{x} | \boldsymbol{y} | \boldsymbol{z} | |---|------------------|------------------|------------------| | Te | 0.5000 | 0.6131 | 0.2500 | | S_1 | 0.8636 | 0.3240 | 0.1112 | | $S_1 S_2 P$ | 0.6026 | 0.4744 | 0.1298 | | P | 0.7852 | 0.4450 | 0.1945 | | O ₁ O ₂ C ₁ C ₂ | 0.8573 | 0.5644 | 0.1985 | | 0. | 0.7654 | 0.4207 | 0.3183 | | C_{i} | 0.9243 | 0.6062 | 0.1095 | | C, | 0.7102 | 0.3191 | 0.3685 | Table 3. Final temperature parameters $\beta_{ij} \times 10^3$. The expression used is exp $-(h^2\beta_{11} + k^2\beta_{12} + l^2\beta_{13} + kl\beta_{13} + hl\beta_{13} + hk\beta_{12})$. | | $\boldsymbol{\beta_{11}}$ | $oldsymbol{eta_{22}}$ | $\boldsymbol{\beta_{33}}$ | β_{23} | β_{13} | β ₁₂ | |---------------|---------------------------|-----------------------|---------------------------|--------------|--------------|-----------------| | \mathbf{Te} | 4.14 | 4.84 | 5.66 | 0.00 | -1.37 | 0.00 | | S, | 7.93 | 5.08 | 4.30 | -1.68 | -1.97 | -3.80 | | $S_1 S_2$ | 4.07 | 5.92 | 3.59 | -1.40 | -0.41 | -0.23 | | P | 4.52 | 4.19 | 1.62 | -0.50 | -1.09 | 1.29 | For the carbon and oxygen atoms, a temperature factor exp $-B(\sin^2\!\theta/\lambda^2)$ was used, with $B=2.96,\,3.92,\,3.84$ and 3.71 for $O_1,\,O_2,\,C_1$, and C_2 , respectively. The atomic parameter output from the final least squares refinement is listed in Tables 2 and 3. # STRUCTURE OF TELLURIUM BIS(DIMETHYLDITHIOPHOSPHATE) AND THE CONFIGURATION AROUND TELLURIUM The crystals are built up of tellurium bis(dimethyldithiophosphate) molecules, with the tellurium atoms located on the twofold symmetry axes which run through the crystals parallel to the b axis. The molecules are connected through weak, intermolecular $\text{Te}...\text{S}_1$ bonds, to form two-dimensional polymeric layers. The bond lengths and angles in the molecule, calculated from the coordinates of Table 2, are listed in Table 4 together with the calculated standard deviations. The uncertainties in cell edges add to the quoted standard deviations. Other interatomic distances and angles are included in this table. Table 4. Bond lengths and angles. | $Te-S_2$ | $2.440\pm0.005~{ m \AA}$ | $\angle S_2'-Te-S_2$ | $98.3 \pm 0.3^{\circ}$ | |-------------------|--------------------------|--|------------------------| | $P-S_2$ | 2.089 ± 0.007 | $\angle \text{Te-S}_2 - P$ | 105.1 ± 0.3 | | $P-S_1$ | 1.923 ± 0.007 | $\overline{\angle}S_2-P-S_1$ | 106.8 ± 0.3 | | $P-O_1$ | 1.57 ± 0.02 | $\overline{\angle}$ S ₂ -P-O ₁ | 107.6 ± 0.6 | | $P-O_2$ | 1.59 ± 0.02 | $\overline{\angle}$ S ₂ -P-O ₂ | 106.9 ± 0.7 | | $O_1 - \bar{C_1}$ | 1.40 ± 0.03 | $\overline{Z}S_1 - P - O_1$ | 116.9 ± 0.6 | | $O_2 - C_2$ | 1.45 ± 0.03 | $\overline{/}S_1-P-O_2$ | 117.3 \pm 0.6 | | | | $\overline{Z}P-O_1-C_1$ | 120.8 ± 1.4 | | | | $\overline{\angle} P - O_2 - C_2$ | 128.2 ± 1.4 | | | | $\overline{\angle}$ O ₁ $-P-O_2$ | 100.6 ± 0.8 | Other interatomic distances and angles. | $S_1 - O_1$ | $2.98 \ \pm 0.02 \ \textrm{\AA}$ | $/S_2-Te-S_1'(I)$ | $88.1 \pm 0.3^{\circ}$ | |------------------------|----------------------------------|---|------------------------| | $S_1 - O_2$ | 3.01 ± 0.02 | \overline{Z} S ₂ -Te-S ₁ ($\dot{\mathbf{H}}$) | 173.0 ± 0.3 | | $S_2 - O_1$ | 2.97 ± 0.02 | $\overline{\angle}$ S ₁ (I) - Te - S ₁ (II) | $85.5~\pm~0.3$ | | $S_2 - O_2$ | 2.97 ± 0.02 | $\overline{\angle} P'(I) - S_1'(I) - Te$ | 115.2 ± 0.3 | | $P-C_1$ | 2.43 ± 0.03 | _ | | | $P-C_2$ | 2.58 ± 0.03 | | | | $O_1 - \overline{O}_2$ | 2.74 ± 0.02 | | | | $Te-S_1'(I)$ | 3.306 ± 0.005 | · | | I and II denote molecules generated from the one in Table 1 by a centre of symmetry in $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ and then by twofold screw axes parallel with c through $(\frac{3}{4},\frac{3}{4})$ and $(\frac{1}{4},\frac{3}{4})$ in Fig. 2, respectively. The P—S—Te—S—P chain has a *trans* configuration. Both *cis* and *trans* configurations have been reported for pentathionic compounds.⁹ The molecule, seen along the normal to the least-squares plane through the tellurium atom and the four closest sulphur atoms with tellurium given triple weight, is shown in Fig. 1. Based on atomic coordinates in A units, this plane has the equation 0.7927x - 0.6096z + 1.9142 = 0. Two of the four closest sulphur atoms belong to the molecule proper, and the other two, more weakly bonded ones, belong to two different neighbouring molecules. The two sulphur atoms closest to tellurium are 0.08 Å on each side of this plane, and the other two are 0.05 Å on each side, with the tellurium atom exactly in the plane. The S-Te-S angles are all near 90 or 180° as shown in Fig. 1. Thus this compound might be considered a distorted square-planar complex of divalent tellurium. In the plane, the short Te-S bonds are cis to each other, but trans to and nearly collinear with the long ones. This effect is found in square-planar cis tellurium(II) complexes, where a thiourea sulphur atom bonded to tellurium has a pronounced lengthening effect on the telluriumhalogen bond trans to it.2 If in these compounds, the Te-S and Te-X bonding occur mainly through overlap of atomic p-orbitals in the bond direction 2 as proposed for trihalides and related compounds, 10,11 this type of bonding should lead to lengthening of the bonds involved, relative to single, covalent bonds. Using a "half p-bond" radius of 1.64 Å for tellurium,2 the S-Te...S system, if symmetrical would be expected to have a total length of about 5.36 Å which is equal to the corresponding length found in symmetrical square-planar trans tellurium(II) complexes.² Table 4 actually yields a distance Fig. 1. The tellurium bis(dimethyldithiophosphate) molecule, and the configuration around the tellurium atom, seen along the normal to the least squares plane through the tellurium atom and the four closest sulphur atoms. of 5.75 Å, but then, the asymmetry is rather pronounced. Similar asymmetry has earlier been found in connection with extra long three-atomic systems of this type.^{2,12} The intramolecular Te—S bond of 2.44 Å is a little longer than a single covalent bond of 2.41 Å or the Te—S bonds of about 2.35 Å found in some telluropentathionic compounds. The weak intermolecular Te…S bond has a length of 3.31 Å which is considerably shorter than the sum of van der Waals radii, which according to Pauling 13 is 4.05 Å. In the dimethyldithiophosphate group, there are two significantly different P—S bonds, of lengths 2.09 Å and 1.92 Å. The sulphur atoms in these bonds participate in the short and long Te—S bonds, respectively. The long P—S bond has the same length as the P—S single bond found in various phosphorus sulphides. The short P—S bond length of 1.92 Å is shorter than the bond length of 1.96 Å found in potassium dimethyldithiophosphate dihydrate, or the average bond length of 1.95 Å found for the P—S double bond in the phosphorus sulphides, but these differences are hardly significant. The $C_1-O_1-P-O_2-C_2$ group is nearly planar, C_1 and C_2 being 0.35 and 0.08 Å away from the plane through O_1 , P, and O_2 . The interplanar angle O_1PO_2/S_2PS_1 is 90.5°. The $P-O_1$ and $P-O_2$ bonds are 1.57 and 1.59 Å, but the difference is not significant. The short P-O bond length implies a considerable amount of double bond character. This is probably due to overlap of p-orbitals of the oxygens with d-orbitals on phosphorus as proposed for phosphates by Cruickshank.15 Fig. 2. The molecular arrangement of tellurium bis(dimethyldithiophosphate) seen along the c-axis. The dihedral angle PS₂Te/S₂TeS₂' and the interplanar angle S₂'TeS₂/S₂PS₁ are 90.7 and 92.3°, respectively. The primed letters denote atoms in the other half of the molecule which are related to the first half (Table 2) by a twofold symmetry axis. #### THE PACKING IN THE CRYSTALS The molecular arrangement seen along the c axis is shown in Fig. 2. Two and two molecules are related through centres of symmetry, glide planes and twofold screw axes. The weak, intermolecular Te...S bonds indicated by dotted lines in Fig. 2, give rise to two-dimensional molecular layers parallel with (110). The short, non-bonded intramolecular S—S distance in the dimethyl-dithiophosphate group in relation to the large covalent radius of tellurium of 1.37 Å ¹³ probably makes mono-nuclear complex formation difficult. Thus, instead of discrete mono-nuclear complex molecules with both sulphur atoms of a thiophosphate anion bonded to the same tellurium atom, the result is the polymeric network of Fig. 2. In the trivalent arsenic ¹⁶ and antimony ¹⁷ ethylxanthates, the same situation arises, but there both sulphur atoms of one anion form greatly asymmetric bonds to the same arsenic or antimony atom. ### REFERENCES - 1. Husebye, S. Acta Chem. Scand. 19 (1965) 1045. - 2. Foss, O. Acta Chem. Scand. 16 (1962) 779. - 3. Mair, G. A. Structure Factor and Least Squares Programs for the IBM 1620, National - Research Council, Ottawa, Canada 1963. 4. Coppens, P., MacGillawry, C. H., Hovenkamp, S. G. and Donners, H. Acta Cryst. 15 (1962) 765. - 5. Thomas, L. H. and Umeda, K. J. Chem. Phys. 26 (1957) 239. - 6. Dawson, B. Acta Cryst. 13 (1960) 403. - Freeman, A. J. and Watson, R. E. In International Tables of Crystallography, The Kynoch Press, Birmingham 1962, Vol. III, p. 202. Hoerni, J. A. and Ibers, J. A. Acta Cryst. 7 (1956) 279. - 9. Foss, O. Advan. Inorg. Chem. Radiochem. 2 (1960) 237. - 10. Wiebenga, E. H., Havinga, E. E. and Boswijk, K. H. Advan. Inorg. Chem. Radiochem. 3 (1961) 133. - Coulson, C. A. J. Chem. Soc. 1964 1442. Foss, O., Husebye, S. and Marøy, K. Acta Chem. Scand. 17 (1963) 1806. - 13. Pauling, L. The Nature of the Chemical Bond, 3rd. Ed., Cornell University Press, Ithaca, New York 1960. - 14. Wells, A. F. Structural Inorganic Chemistry, The Clarendon Press, Oxford 1962, - p. 659.15. Cruickshank, D. W. J. J. Chem. Soc. 1961 5486. - 16. Carrai, G. and Gottardi, G. Z. Krist. 115 (1961) 451. - 17. Gottardi, G. Z. Krist. 113 (1960) 373. Received September 18, 1965.