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Sorption-desorption isotherms in a system with hysteresis form
a set of curves M(A4,D) (M = sorbed amount, 4 = highest pressure
on adsorption, D = final pressure on desorption). Such data can,
without any detailed extra assumptions, be transformed to a map of

a load function s(a,d) so that M(4,D) is the integral fs dadd over the
area bounded by a = d, a = 4 and d = D (Fig. 2b). The surface load
may in places be zero or degenerate to curve loads. The map may
thus show a non-zero surface load s(a,d) in certain areas, and a curve
load on the reversible line @ = d, and on lag curves Dy (a). Lag curves
correspond to regions with all-or-nothing sorption such as the interior
of a pore. Areas with positive and negative values for s may be the
result of sorption at the meniscus of a pore (reversible if the pore is
filled) and at the inner surface of a pore (reversible if the pore is
empty). The position of the lag curve may indicate what sorts of
pores are likely and unlikely to dominate in the sample.

The phenomenon of sorption hysteresis has been known for about a century.
Classical examples are the sorption of water vapor on silica gel or active
charcoal.

DEFINITION OF M(A,D). PORE MODELS

Let us consider a certain amount of sorbent, in apparent equilibrium at
some given temperature with a gas phase which contains a single substance
(the sorbate) with a pressure P. Let M be the amount of sorbate which has
been taken up by the sorbent.

We start with an empty sorbent in a vacuum (M = 0, P = 0), let P in-
crease to the value A, and wait for equilibrium. The amount then sorbed
we shall denote as M(A4,4). Then we lower P to the value D and again wait
for equilibrium at which M has a new value M(A4,D). (4 stands for adsorption,
D for desorption).

Let us assume that in some region there is a hysteresis loop, which
means that M(4,D) > M(D,D). Thus, M(4,D) is a function of both A and D.
So, we will have one adsorption curve, M(P,P) when P goes from 0 to A,
and a family of desorption curves, M(A4,P) when P decreases from different
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values of 4 to 0. (Fig. 1). We shall assume — as is often found in practice —
that these curves are perfectly reproducible, even if the system is cycled many
times. We are thus not interested in irreproducible hysteresis phenomena which
may be due, e.g., to impurities or deformation of the sorbent.

It is often convenient to express P, A, and D as fractions of the saturation
pressure, P,, of the liquid sorbate; this will be done in the experimental part.’
The following treatment is, however, independent of the units used for the
pressures P, A, D, or for M.

Most of the measurements that have been recorded in literature on sorption
in the hysteresis region have either concerned adsorption curves M(A4,4),
starting from an empty sorbent, or the desorption from an almost filled sorbent,
M(A,D) (A = 1). Only few workers (notably Katz! and Everett et al.?™4)
have also been interested in ‘“‘scanning curves’” M(4,D), starting from various
A values, or in measurements with a still more complicated history.

Several authors have made attempts to interpret sorption hysteresis by
some physical model. Generally it has been assumed that capillary condensa-
tion is important in this region. A pore of a certain shape: an open cylinder,
a “bottle”, or the space between packed plates or spheres, will be filled by
capillary condensation only when P has reached a certain value, say 4; on
decreasing P, the pore may be emptied only at a lower pressure D. If 4 and
D are expressed as fractions of P, (and hence are <C 1), then we have the simple
relationship D = A*, where k (> 1) is the ratio between the efficient radius
of curvature on filling and emptying the pore. For a cylindrical pore open in
both ends, £ = 2 so that D = A?; for wide ‘‘bottles”, k may be larger, etc.
For a review, see the articles of de Boer and Everett ® and the following
discussion; here, for instance, the effect of various pore shapes and of inter-
connection of pores is discussed.

TRANSFORM FUNCTIONS IN SOME OTHER FIELDS

We have tried a somewhat more general approach, namely to make accurate
measurements of a series of scanning curves, M(A,D) in the hysteresis region,
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and to calculate from these primary data a mathematical transform (the
8(a,d) map) which is easier to understand and interpret than the original data.

Analogies to this procedure may be found in other branches of physics
and chemistry.

In crystal structure analysis, the primary intensity data I(k,k,) may be
transformed to the Patterson function P(u,v,w) without adding any extra
assumption. The Patterson function is a sum of contributions, each of which
has a maximum at the position corresponding to an interatomic vector. By
means of this transform one can immediately screen out all those otherwise
conceivable structures that will require interatomic distances which are not
found among the Patterson maxima. After a more accurate analysis of the
transform, and of the primary data, usually only one possible structure remains
for which one may then refine the atomic positions.

Another example is taken from equilibrium analysis. Data Z(log a,B)
obtained directly from EMF measurements, may be transformed to a plot

(p, q) which gives the average composition of the complexes A,B, in each
solution studied.® Again, the transform is calculated directly from the experi-
mental data, without any additional assumption (except that the data contain
no systematic error) and we can use the transform to screen the conceivable
mechanisms; usually one gets a good clue as to which complexes predominate.
The final step may be a generahzed least-square refinement of the primary
data.

DEFINITION OF s(a,d). SURFACE LOAD AND CURVE LOAD

Our aim has been to transform the sorption data M(4,D) to a map s(a,d)
which can more easily be used for further analysis and discussion of the data.
The construction of the s(a,d) map involves no extra assumptions except the
very general ones inherent in its definition, and the usual working hypothesis
that there are no systematic errors in the data.

The coordinates of the map we shall denote by lower case letters, a and d,
as distinguished from 4 and D which are the two limiting pressures in a certain
experiment. The map has a physical meaning only for d < a. To each point
of the map we ascribe a surface load function s(a, d)so that s(a, d)dadd is the
amount of sorbate which is held in such sites that it is sorbed when P increases
from a to @ + da and desorbed when P decreases from d 4 dd to d. For certain
irreversible types of sorption one may think of @ and d as sharp limits for the
adsorption and desorption of a certain sorbed molecule in a specific site.
For reversibly sorbed molecules, s must be interpreted statistically (see ‘“‘appli-
cation to a physical model” below).

The total amount sorbed, M, is the integral over the surface covered.
Fig. 2a shows over what area to take the integral [sdadd in order
to obtain M(A4,4), and Fig. 2b shows the area corresponding to M(A,D).
In the case indicated by Fig. 2¢, the pressure has been varied as follows:
-+ A, > D, » A, » D,. If our picture is correct, the sorbed amount will be
given by the integral of s over the area marked out, thus M = M(4,,D,) +
M(Ay,Dy)— M(4,,D,).
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Fig. 2. Map s(a,d), schematical. Thick
frames surround areas over which to

integrate fsdadd on (a) sorption to A4,
(b) sorption to A and desorption to D,
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Fig. 3. Schematic picture of sorbent, with
four different types of site: I: Open surface,
II: interior of pore, III: top layer of
meniscus when pore is filled, IV: inner

(c) sequence - A, - D, - A, » D,, surface of pore.
(d-e) map with a lag curve Dy (a): (d) for

D > Dy(A), () for D < Dy(A).

For a real sorbent, there may be large areas with s = 0. On the other hand,
there may be sharp ridges in the s(a,d) map, which are so steep that they
cannot be distinguished experimentally from mathemathical curves with
a certain curve load, say l4(a)da, per element. In the following we shall treat
such curve loads separate from the rest of the s(a,d) function.

A special case is the line d = a, which corresponds to completely reversible
sorption; the load on an element of this line will be denoted by r(d)dd.

So let us assume that in our map we have

1) the “reversible” curve load, [r(d)dd, on the line d = a.

2) a surface load fs(a,d)dadd which may be zero in certain regions
3) the “lag curve’ load [l4(a)da, on the curve

d = D;(a) or a = A;(d) (1)
The corresponding parts of M will be denoted by My, Mg and M, :
M= M, + Mg + M, (2)
1) For the reversible part it follows from our definitions
D
M (D) = [, r(d)ad (3)

M, depends only on the present pressure D and is independent of the
history of the system, especially of 4.
2) The surface load gives a contribution, on the adsorption branch D = A4:

Mya,4) = [ da [ sadyd (4)

On desorption to D the remaining contribution is (compare Fig. 2b)
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A D
M(A,D) = MyD,D) + [, da [, s@,d)dd =
My4,4) — [+ da [, sadydd (5)

3) The contribution from a lag curve load (Fig. 2d-e) finally, is on the adsorp-
tion curve:

A
M (4,4) = [, l(a)da = Ly(4) (6)

On desorption the contribution from the lag curve load will be the same,
aslong as D > D;(A), the highest value for D on the loaded curve, or, using the
inverse function, (1), 4,(D) > A (Fig. 2d).

When D becomes less than D .(4), part of the curve load will be desorbed,
and what remains is (Fig. 2e):

M,4.D) = [ 1apa = [ 1y@)dd = Lo(D) (7)

Hence, M| is under these conditions a function of D alone; we have in-
troduced the functlon lp defined by

Ip(d)dd = 1,(A1(d)) d4,(d) (7a)
To sum up we have

M,(A,D) = Ly(A)if D > D,(4) (8a)
M,(A,D) = Ly(D)if D < D,(4) (8b)

We may now calculate the partial derivatives of M with respect to 4
and D. From eqns (2—17) we find

if D > Dy (A): EZ— =[] s(d,aad + 1,4y, % a o =r(D)+ [fs@Dda  (9a)

oM
if D < Dy (A): a - = — [7 s(aayaa; X o =(D) + [ s(@D)da + (D) (9b)
For the second-order derivative we find in both cases
FM__ 4D (10)

APPLICATION TO A PHYSICAL MODEL

Any s(a,d) transform might be explained as the result of all-or-nothing
sorption: each site of the sorbent acts in such a way that it is filled exactly
when P reaches @ on adsorption, and is emptied exactly at P = d on desorp-
tion; a site which corresponds to a point on the reversible line is filled at a
and emptied at the same pressure, d = a.

It seems more realistic, however, to assume that the sorption in many
sites is statistical and that at each sorbate pressure P one may ascribe to
each site a certain number z(P), 0 < x < 1, which for a site of molecular
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dimensions is the probability for its being filled, and for an assembly of such
sites the average coverage. Different sites may have different values for x,
and z may also depend on the history.

In Fig. 4 we shall now consider four conceivable types of sites, I—IV,
which might all be imagined to occur for instance in a physical situation
such as that in Fig. 3; ‘‘bottle’ pores surrounded by open areas. The treatment,
is, however, in no way restricted to this picture.

. In Fig. 4 we have represented each type of site from left to right by a map,

z(P,), a map s(a,d), and by a diagram M(P). Each element dc represents
the sorption capacity of a certain site (type of sites) and (P,c)dc represents
the amount actually sorbed by this site at the pressure P. With other words,
x is the coverage, the fraction of the sorption capacity of the site that is really
being used. C, is the total sorption capacity of all the sites considered. The
coordinates of the map are ¢ and P, and we must imagine x as the third
coordinate, perpendicular to the plane of the paper; x is not drawn in the
figures but is indicated by a symbol. If there is only one symbol in the field,
z is independent of the history: “0” or “1” indicates that x = 0 or z = 1,
constantly, whereas the letter “z’”’ indicates a variable z(P,c) between 0 and 1.
Two symbols with arrows, 4 and |, indicate that in this field of the map the
coverage z is different on adsorption and desorption.

Type I

Fig. 4 I represents a case of completely reversible sorption, such as might
be expected for sites on or close to an open surface (I in Fig. 3) on which both
sorption and desorption proceed rapidly. For each pressure P, z(P,c) depends
only on P and not on the earlier history. Hence we would have integrating
along a horizontal line P = D (see also Fig. 5 I(M)),

c.

M(4,D) = [, #(D,c)de (11)

which in this case is a function of D only, and independent of A. Differenti-
ation and comparison with (9—10) gives

oM ‘

m=0, hence s = 0,1, = 0 (11a)
oM  [%ox(Dc) .,

a0 =Jogp ~ de=rD) (11b)

This type of site would give, in the s(a,d) transform, (Fig. 4 1:2) a reversible
curve load on the line d = a, and no surface load or lag curve. The diagram
M(P) gives a single curve, the same for sorption and desorption (Fig. 4 I:3).

Type II

Fig. 4 II represents sites with all-or-nothing irreversible sorption, which
might correspond, for instance, to sites in the interior of a pore (II in Fig. 3);
these sites are filled (x = 1) if the pore is filled, otherwise empty (x = 0).
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A certain site dc remains empty (¥ = 0) until P reaches a characteristic
value 4, (c), at which it is filled (x = 1). If P is again decreased, the site remains
filled until P reaches the value Dj(c) (<< Ay(c)) at which it is emptied again.
We arrange the elements in such an order that 4, (c) increases monotonously
and assume (Fig. 4 II:1) that there is a single curve Dj(c) which also rises
monotonously. One could imagine a system where this is not so. However,
it will be possible to describe any system as the sum of a limited number of
systems, each of which gives a single curve D, (c) which either increases or
decreases monotonously. We see no reason to discuss the treatment of such
complicated systems until a practical case is met with.

We shall thus consider a system with a single rising curve D, (c), such as
that in Fig. 4 II:1 and 5 II (M), and introduce the notation:

¢ = Cyla)ifa = 4,(c) (12a)
¢ = COp(d)ifd = Dy(c) (12b)
a = 4,(d)andd = D(a) ifa = A;(c) and d = D, (c) (13)
4;(0) = Ay; Dy (0) = D, (14)

All sites are empty (M = 0) if P << D,,. If P is raised from a low value to
A, all sites are filled up to ¢ = C4(A4) so that M = C4(4). If P is then decreased,
M remains unchanged until P = D reaches the value D,(4); for lower D
values only sites with ¢ < Cp(D) are filled so that M = Cp(D). (Fig. 5 II(M)).
Hence

M(A,D) = C4(A) for D > D;(A) (Fig. 5 I1a) (15)

M(A,D) = Cp(D) for D < D;(A) (Fig. 5 1Ib)

Differentiation and comparison with (9) gives
oM dC,(4) oM

for D > Dy(A): 50 = =& = L4(4); 55 = 0 (16a)
d .
for D < Dy(A): % —0; 01—1')4 - do(fl()D ) —1(D) (16b)

The s(a,d) map (Fig. 4 I1:2) will then contain a lag curve, d = D, (a) with
the load 14(4). In the M(P) diagram, shown in Fig. 4 I1:3, the scanning curves
are horizontal lines between each A value and the corresponding D = D, (4).

In the limiting case (not shown here) where the curves 4, (c) and D,(c)
coincide, the lag curve would coincide with the reversible curve a = d and
we would have a completely reversible sorption, not to be distinguished from
type I by sorption measurements, although there would be only sites with
all-or-nothing sorption.

Type IIL

Fig. 4 III shows another conceivable type of irreversible sorption, which
may correspond to sites in the top layer of the meniscus at the entrance of a
pore (III in Fig. 3). If the pore is filled, there is a certain probability x(P,c)
that an element dc will be filled by reversible sorption; otherwise the site is

Acta Chem. Scand. 19 (1965) No. 10



2330 EKEDAHL AND SILLEN

“swimming” in the gas phase, and # = 0. As for the sites of type II, and
type IV in the following, we describe the conditions for filling and emptying
the pore by means of two monotonously increasing curves A;(c) and D;(c);
in a real case, the total capacities C involved for sorption of type II, III,
and IV are surely not the same, and so the diagram z(P,c) may have quite
different dimensions for sites of type II, III, and IV. However, one might
reasonably expect that the lag curve D (a) will be the same for sites of types
II, 111, and IV if they are connected with the same system of pores.
The integration path, to find M, is indicated in Fig. 5 ITI(M):

C,(4)
M) = [,*7 2(d,e)de (17a)
(4)
if D > Dy(d): M(4,D) = [ 2(Dc)do (17b, Fig 5111a)
D)
if D < Dy(A): M(4, D) f 2P (D)o (17, Fig 5111h)

Differentiation gives

if D > D (A): 5Z — a(D,C(4)) 1¢414) dC’A(A) oM fCA(A) 6x(D da(D,c) do;

9D
BM _ 3u(D,0u(A)) dCA(A)
340D — — aD a4~ 4D (18a)
. oM oM dc oD (D,
D < Dy(A): o0 = 0; 35 = =(D,Co(D)) "( L “‘fmc) de;
MU
Type IV

The behavior of a fourth type of site is indicated by Fig. 4 IV. It might
apply to sites at the inner walls of a pore (IV in Fig. 3). If the pore is empty,
these sites give reversible sorption, with a partial coverage x(P,c). If the pore
is filled, these sites are filled too (x = 1). We find as before (see also the inte-
gration path in Fig. 5 IV(M))

Co
M(4,4) = Ca(d) + [cyn a(4,0)de (19a)
if D > D;(A): M(4,D) = C4(4) + f E'A(A, z(D,c)de (19b, Fig 5IVa)
if D < Dy(A): M(4,D) = Cp(D) + f ﬁ;w) 2(D,c)de (19¢, Fig 5IVb)

(if D < D,, Cp(D) = 0).
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Differentiating we find

if D > D, (A): g-flf = d(’;‘f) (1—=(D,C4(4));

oM G x(D, M dC 4 (A4) dx(D,C4(A

oD = chm xfwc) de; 5-rs = 551 ) 9 6DA( ) _ D<o (208)
. OM M  dCp(D) L PM

CONTRIBUTIONS TO Mg, Mg, AND Mj,

Figs. 4 and 5 also indicate what contributions each of these types of sites
gives to the map s(a,d), to the M(P) diagram, and to the fractions My, M,
and M; of the total sorbed amount M.

As already mentioned, sites of type I give only a reversible curve load and
hence contribute only to My, whereas type II gives only a loaded lag curve,
and hence a term in M;. To understand how type III and type IV act, it is
instructive to consider the integral [z dc.

M = Mg + Mg + M
P
1 P ‘
c
1) x(P.c) 2) s(a.d) 3) M(P) Co
... Ae)
p d M a eﬁo._(c) -
1 X r, i
c a P 1 Calt)
Co b 04 L —_—
Py Al d M ColD)
o A0 Zloie) DL(o) 5 L -
Do o g e . = F | =]
Co m -x
P x_—ALc) 14 M b |
wo et o DL(o) ﬁ i il ol
0 ¢ a P
Co ,_1 r_
1 .-
P AI(C) d M 2 /
v e | G w
X ¢ la P b / | P_
Co - i

Fig. 4. Four different types of sites, which
may be connected with I—IV in Fig. 3
but may also arise in other ways. For each
type of site the following diagrams are
given: (1) pressure P versus capacity c.
The symbol 0, « or 1 refers to the coverage
on the sites (see text). (2) Map s(a,d),
(3) isotherms M(P) for adsorption and
desorption.
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M, terms to total amounts of M for the
types of sites I—1IV in Fig. 4. Curves or
lines indicate the paths along which one

should integrate fzdc in order to get the
contributions in question. The thickness
of the lines denote the value to be used

for 2 under the [ sign (1, +=z, or —z).
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Let us for instance calculate M for type III, if D > D, (A) and D > A, (Fig.
2 d, Fig. 5 IIIa). We apply (5) in the regions with non-zero s, and then introduce
the expression (18a) for s, and the definition (12a). This gives us

My4,0)= [ f: da [ 0 sdd+ [ "o [ zL(,,, sdd = [ (2(a,Cala)—
a=A

x(Dy(a),C4(@))) dC4(a) + f eep (@(D,C4(a))—x(Dy(a),C4(a)))dC4la) = (21)

C (D) C414) C4(4) _

= fo (A (c),c)de 4+ ch}D) z(D,c)dc— .[o 2(Dy(c),c)dc =M+ —Mg

Hence, we may write Mg as the difference between two integrals [z dc along
the paths marked out in Fig. 5 IIla (My). We may proceed in the same way
for decreasing values of D (Fig. 5 IIIb (Mg)) and find the same picture: Mg is
composed of two curve integrals, M * and My~. To the right, the integrals
are limited by C4(4) or, if this is lower, by Cp(D).

We shall remember that the total amount sorbed, M(4,D) is the integral
Jx dc along the line P = D, up to the right-hand limit.

The integration path for Ms* has to the right a horizontal part coinciding
with the integration path for M, and to the left follows whatever is left of the
C, line for P << D. The negative term My contains the integral along what
remains of the Cp curve, up to C,(4) or Cp(D).

The difference, M — Mg can be written as follows

M—Mg= M,*— M.~ + M, (22)

The My terms are connected with the C4 curve. As seen from Fig. 5 IIla
(My) they depend on D only, so that this contribution is reversible. The term
M, finally, fulfills the conditions (8): for D > D,(A) it depends only on 4,
for D < D;(A) it depends only on D. Hence we have split up M into the terms
My, Mg, and M;; full-drawn or broken lines in Fig. 5 indicate if the corre-
sponding integral [ dc¢, with increasing ¢, will be counted with a positive or
negative sign in the sum for M.

One may deduce how the corresponding terms for case IV would behave,
(Fig. 5 IV) for instance by considering type IV as the sum of sorption of
type 1 with the coverage x and sorption of type III with coverage (1—=z).
Fig. 5 IV again gives the contributions of the various terms to M for two
different stages of desorption. We hope it is self-explanatory.

Hence, if we have a porous sorbent we may expect contributions to M
from sites of types I, III, and IV; to Mg from sites of types III and IV; and
to My from sites of types II, III, and IV. We may also expect the contribu-
tions to M to be concentrated to the same lag curve (or curves), and the
contributions to s to be situated in the area between the corresponding lag curve
and the ‘“reversible line” a = d, with vertical limits at the extreme A values
on the lag curves.

TREATMENT OF EXPERIMENTAL DATA

From experimental data it is usually easy to derive the approximate
position of the lag curve. If the data are accurate enough, one may also estimate
s in certain regions, using (10).
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For sorbents of the general type indicated in Fig. 3 — or in general for
sorbents containing sites of types I—IV, regardless of their physical nature —
one may expect that the s(a,d) map will contain one or more lag curves, and
that s will have non-zero (positive or negative) values in the region which is
bounded by the lag curve, the reversible line, and the vertical line witha = 4,
the lowest value on the lag curve. The upper limiting value for a on the lag
curve is unity, which corresponds to the saturation pressure.

In the refinement of the map, it is hence a useful working hypothesis that
8 has non-zero values only in the range indicated. One may then (as will be
seen in a following paper) divide M into terms My, Mg, and M,. It is not
possible to distinguish directly the contributions My, Mg, and M; from
various types of sites. However, it can be said that if M (and hence s) are
positive in a region, this indicates that sites of type III predominate, whereas
a negative s would indicate the influence of sites of type IV.

Approximation s(a). In the few systems which we have hitherto studied,’
this picture has been born out by the experiments. Within the limit of accuracy,
s could be treated as a function of a alone, independent of d. This need not
necessarily be so, as seen from eqn. (18 a), but it is surely a convenient approxi-
mation in the calculations, until the accuracy of measurements can be increased
considerably.

The map would thus look as indicated in Fig. 4 III:2and IV:2. In the calcula-
tion, it then proves convenient to introduce equal positive and negative
loads s(a) in the areas “Mg;” and “M,” indicated in Fig. 6a. We then have

My = Mgy— Mg — Mg, (23)
Mg, is the integral over the triangle above the reversible line, Mg, over the

area below the lag curve and above D = D, and My, is the integral over the
whole rectangle in Fig. 6a:

A
My = (D—Dy) [, s(a)da; (23a)
M, = f:. (D—a)s(a)da if D > A, else Mgz = 0 (23b)
My, = [ (Du@)—Do)s(aMaif D > Dy(4), else (230)

4°(D)
My, = [X7 (Dyfa)—Dy)s(a)da

As is seen, M, is a function of D only, and M, fulfils the conditions (8).
They may hence, if one finds this more convenient, be treated as parts of

Fig. 6. Map s(a,d) for a system with one lag
curve, and with s(a) independent of d
above the curve. For convenience in calcu-
lations, one sets Mg = Mgr— Mgr— Mgy,
where all the quantities are integrals of
Js(a)dadd: Mgy over the whole rectangle
indicated, and the others over the areas
marked with these symbols.
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My and M;. We have thus, for convenience in calculations, added a fictitious
surface load to the areas denoted by My, and M and compensated it by
equal negative terms in M; and M,. Figs. 6a and 6b show two successive
states of desorption; the figure has here been drawn so that 4, > D;(4),
but this is surely no necessary requirement.

Recording of data. Exactly how the data should be recorded partly depends
on the accuracy of the measurements. With measurements of a very high
accuracy it might be possible to make a real contour map s(a,d). Present
accuracy only seems to allow us to divide the map into a number of regions,
to each of which is assigned a constant value for s.

The contributions My(D) and M,(A4) can be recorded either as such, or
by their derivatives r(D) and [,(A4).

The position of the lag curve has a special interest since it will be possible
to say with a glance whether it is compatible with one ‘“pore model” or another.

Of course, there is a chance that with the increasing accuracy it will be
shown that our fundamental assumptions are not quite correct. This, however,
need not concern us as yet.

Comparison with the treatment of Everett et al. A few years ago, D. H. Eve-
rett et al.* made a general mathematical approach to hysteresis phenomena
including, for instance, magnetic and electric hysteresis. The most detailed
mathematical analysis is made in the third paper by Everett.* He assumed the
system to be built up of a number of domains, each of which can be in one
of two states, I and II. The system is controlled by an external variable x
(such as magnetic field strength or sorbate pressure) and for each domain
there are two characteristic values z(I - II) and z(II - I) at which the
transitions take place. The fact that the two values differ is the cause of the
hysteresis. The distributions of these values among the domains are regulated
by partition functions.

The function j used by Everett would in the case of sorption, be 1 for a
filled site and 0 for an empty site. He denotes the adsorption curve by p(x)
(in our notation M(A,A)) and introduces a function g so defined that, if we
replace Everett’s z, and 2, by A and D, we have the correspondence g(D,4) =
M(A,D)—M(D,D). He describes the properties of the system by giving a
diagram of dp/dx and dg(x fixed, x)/dx as functions of z; in our notation
dM(A,4)/dA and dM(A,D)/dA as functions of 4.

The “domain complexion”, used by Everett, is a history of the system,
corresponding, e.g., to our Fig. 2¢c. Everett gives this in the form of a matrix.
Those who are interested may easily derive other connections between our
approach and Everett’s.

Although the general philosophy of the approaches of Everett and ourselves
are similar, we have a feeling that ours is somewhat handier, at least for the
sorption case. Perhaps it is also somewhat more general. There should, by
the way, be no difficulty extending our approach to other types of hysteresis.
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