The Thermal Decomposition of NbO₂F

STEN ANDERSSON

Research Institute of National Defence, Department 4, Stockholm and Institute of Inorganic and Physical Chemistry, University of Stockholm

and ANDERS ASTRÖM

Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm, Sweden

The decomposition of NbO₂F in an argon atmosphere to α -Nb₂O₅ has been found to pass through Nb₃O₇F and the N-form of Nb₂O₅. The decomposition occurs by the formation of the gas molecule NbOF₃ and the losses of weight observed are in agreement with the following decomposition formulae:

$$\begin{array}{l} 4 \ \ NbO_2F(s) = \ Nb_3O_7F(s) + \ NbOF_3(g) \\ 3 \ \ Nb_3O_7F(s) = 4 \ \ Nb_2O_5(s) + \ NbOF_3(g) \end{array}$$

The phase analysis of the system $NbO_2F-Nb_2O_5$, performed in sealed platinum capsules at temperatures between $500^{\circ}C-1100^{\circ}C$, revealed the following four compounds: Nb_3O_7F , $Nb_5O_{12}F$, $Nb_{17}O_{42}F$, and $Nb_{31}O_{77}F.^{1-3}$ In order to learn whether these phases could be synthesized by a different technique, studies on the thermal decomposition of NbO_2F were taken up.

EXPERIMENTAL

 ${
m NbO_2F}$ was synthesized by dissolving ${
m Nb_2O_5}$ (Kawecki, 99.99 %) in aqueous hydrogen fluoride and the clear solution was then evaporated to dryness. The product was heated in a stream of dried argon at $400^{\circ}{\rm C}$ for a few hours. ${
m NbO_2F}$ was then identified by means of its Guinier powder pattern.¹ The thermal decomposition of ${
m NbO_2F}$ was performed by heating a sample of ${
m NbO_2F}$ in a slow stream of dried argon in a horizontal furnace. The sample, kept in a platinum boat, was heated stepwise up to $1320^{\circ}{\rm C}$. For every observation, marked with a circle in Fig. 1, the sample was kept at the temperature for 10 min and then weighed at room temperature. In a separate run, nine samples were taken out at different temperatures, indicated by arrows in Fig. 1, in order to obtain X-ray powder pattern identification of the phase present.

Fig. 1. The thermal decomposition of NbO₂F.

RESULTS OF THE THERMAL DECOMPOSITION AND DISCUSSION

The decomposition curve is given in Fig. 1. Table 1 shows the X-ray powder identification of the phases formed. The plateau at temperatures between 840°C and 970°C corresponds to pure $\mathrm{Nb_3O_7F}$. Large amounts of the compound can thus be made in this way. Although a small loss of weight was observed between 1100°C and 1270°C, the X-ray powder patterns showed only one phase, viz. the N-Nb₂O₅. At 1320°C the powder pattern showed only the high temperature form of niobia, α -Nb₂O₅.

The total losses of weight for two separate runs were 38.2 and 37.2 %, respectively. If the overall reaction

$$3 \text{ NbO}_2\text{F(s)} = \text{Nb}_2\text{O}_5(\text{s}) + \text{NbOF}_3(\text{g})$$

is assumed, the calculated loss of weight is 38.4 %. For the reaction

$$5 \text{ NbO}_2 F(s) = \text{NbF}_5(g) + 2 \text{ Nb}_2 O_5(s)$$

Table 1. X-Ray powder analysis of samples from the thermal decomposition of NbO₂F according to Fig. 1.

Sample	Phases present
1	$\mathrm{NbO_2F} + \mathrm{Nb_3O_7F}$
$oldsymbol{ ilde{2}}$	Nb_3O_2F
$ar{f 3}$	$Nb_3O_7F + small amount of N-Nb_2O_5$
4	$Nb_{\bullet}O_{\bullet}F$ + increasing amount of $N_{\bullet}Nb_{\bullet}O_{\bullet}$
$\bar{f 5}$	$Nb_3O_7F + increasing amount of N-Nb_2O_5$ small amount of $Nb_3O_7F + N-Nb_2O_5$
6	$N-Nb_2O_5$
· 7	N-Nb-O
8	$N-Nb_{s}O_{\epsilon} + \alpha-Nb_{s}O_{\epsilon}$
9	$N-Nb_2O_5 + \frac{\alpha - Nb_2O_5}{\alpha - Nb_2O_5}$

Acta Chem. Scand. 19 (1965) No. 9

the calculated loss of weight is 26.1 %. The experimentally observed losses of weight thus agree very well with the assumption that NbOF3 is formed. For the first step,

$$4 \text{ NbO}_2F(s) = \text{Nb}_3O_7F(s) + \text{NbOF}_3(g)$$

the two observed losses of weight, 28.5 and 28.2 %, respectively, agree very well with the one calculated, viz. 28.8 %.

The existence of the gaseous molecule NbOF₃ has been predicted by Schäfer. N-Nb₂O₅ was first synthesized by Schäfer et al. with the transport reaction

$$Nb_2O_5(s) + 3 NbCl_5(g) = 5 NbOCl_3(g)$$

N-Nb₂O₅ has also been obtained under hydrothermal conditions. The N-Nb₂O₅ formed during this thermal decomposition seems to have a small amount of fluorine incorporated in its lattice. This can very well be understood from its crystal structure and will be discussed separately.6

REFERENCES

- 1. Andersson, S. and Åström, A. Acta Chem. Scand. 18 (1964) 2233.
- Andersson, S. Acta Chem. Scand. 18 (1964) 2339.
 Andersson, S. Acta Chem. Scand. 19 (1965) 1401.
 Schäfer, H. Chemische Transportreaktionen, Verlag Chemie, Weinheim 1962.
- 5. Schäfer, H., Schulte, F. and Gruehn, R. Angew. Chem. 76 (1964) 536.
- 6. Andersson, S. Unpublished results.

Received July 20, 1965.