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(2.0 moles) and after 400 ml of water was
added, the heavier organic layer was separated
and it was immediately fractionated under
reduced pressure.
1,3-Dibromo-3-methylbutanone-2, yield 56 9%,
b.p. 91—93°3/11 mm, np?® = 1.5166. Wagner
and Moore gave no yield, b.p. 111°C/15 mm,
np® = 1.5178.3
1,3-Dibromo-3-methylpentanone-2, yield 679%,
b.p. 114—115°C/10 mm, np? = 1.5146. Wag-
ner and Moore gave no yield, b.p. 57°C/1 mm,
np¥® = 1.51565.3
1,3-Dibromo-3-methylheptanone-2, yield 40%,,
b.p. 124—127°C/11 mm, np* = 1.5022.
(Found: C 33.63; H 4.94; Br 55.31. Calec. for
C¢H,,Br,0: C 33.59; H 4.93; Br 55.88).

Rearrangement of dibromoketone. General
procedure. To 0.1 mole of dibromoketone was
added a solution of 0.8 mole of the required
hydroxide in 1000 ml of water or ethanol, 0.4
mole of the carbonate, or 0.8 mole of the bi-
carbonate in 1000 ml of water. The mixture
was thoroughly stirred and when constant
titration-values against methylorange were
obtained (0.2 equiv. of base consumed), the
solution was extracted with ether (3 x 100
ml), acidified with hydrochloric acid and again
extracted with ether (5 X 100 ml). After
drying, the ether phase was evaporated in
vacuo. The yields and composition of the crude
extracts are given in Table 1.
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The Bromination of
3-Bromocyclopentane-1,2-dione

CHRISTOFFER RAPPE

Institute of Chemistry, University of Uppsala,
Uppsala, Sweden

The bromination of ketones is presumed
to proceed via the enol form.! 3-Bromo-
cyclopentane-1,2-dione (Ia) is an interest-
ing model substance for bromination
studies since it already exists in its enol
form, Ib.? From this enol the bromination
should give 3,3-dibromocyclopentane-1,2-
dione (Ila) or its enol form, IIb. From the
other enol of 3-bromocyclopentane-1,2-
dione (Ic) 3,5-dibromocyclopentane-1,2-
dione (IIIa) or its enol form IIIb or Illc
would be formed, see Scheme 1.
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Scheme 1. e

Bromine was found to react easily with
3-bromocyclopentane-1,2-dione (Ib). From
the reaction mixture a dibromoketone,
C;H,Br,0,, could be isolated in 70 9%
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Fig. 1. Infrared spectrum of 3,5-dibromocyclopentane-1,2-dione. Solid in KBr.

yield. The substance was analyzed by
infrared (Fig. 1) and by NMR (Fig. 2).

The IR-spectrum had a strong band
at 6.0 yx indicating a high content of enol
(ITb, IITb or IIIc). The NMR-spectrum,
recorded in acetone, DMSO, DMF and
chloroform, was in all cases a typical
AMX.-system, with the intensity ratio
1:1:1 in agreement with structure IIIb.

From the spectrum the coupling
constants could be determined: Jgs =
6.5 cycles/sec and Jirans = 2.2 cycles/sec.
These values agree with the accepted
values for coupling constants in rings.?
The Jgm was estimated to be 18.7 cycles/
sec. Further analysis of the spectrum
gave 38.8 cycles/sec for the chemical
shift between the two gem protons.

The formation of the 3,5-dibromo-
compound is worth discussing. A plausible
explanation of this behaviour seems to
be that the 3,3-dibromoketone is formed
first but then rearranges to the more
stable 3,5-dibromo isomer. NMR analyses
suggest that the crude reaction residue
is a 50:50 mixture of IIa, a compound
with an A,B;-system, and IIIb.

a,a-Dibromoketones do easily rearrange
to the a,a’-dibromo isomer.%® Although only
little discussed before, this migration of
bromine seems to be rather general in the
preparation of «,a’-dibromoketones. The
a,x-dibromoketone forms first and then
rearranges to the o,a’-dibromoketone,
which is the isolated product. A more
detailed study of this behaviour will be
given elsewhere.®
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Experimental. The micro analyses were
carried out by the Analytical Laboratory at the
Chemical Institute, University of Uppsala.
The NMR-spectra were recorded on a Varian
model A—60 spectrometer.

3,5-Dibromocyclopentane-1,2-dione. To 5.0 g
of 3-bromocyclopentane-1,2-dione 2 dissolved
in 150 ml of boiling carbon tetrachloride was
added 4.5 g of bromine in 10 ml of carbon
tetrachloride during 30 min. After completion
of the addition, 100 ml of carbon tetrachloride
was distilled off, and the residue chilled. A

T T T

W

! 1 1
50 4.0 3.0 )

Fig. 2. NMR-spectrum of 3,5-dibromocyelo-
pentane-1,2-dione in acetone.
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yield of 5.2 g of tan-coloured crystals, m.p.
142—147°C (yield 70 %), was obtained.
Repeated recrystallization from carbon tetra-
chloride gave faint yellow crystals, m.p. 155—
156°C. (Found: C 23.64; H 1.55; Br 62.61;
Cale. for C;H,Br,0,: C 23.47; H 1.58; Br 62.45).
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Proton Mobility of a-Haloketones
CHRISTOFFER RAPPE

Institute of Chemistry, University of Uppsala,
Uppsala, Sweden

y primary interest was to explain the
results of the halogenation of certain
ketones and haloketones.!~¢ In this connec-
tion it is necessary to determine the mo-
bilities of protons within some pertinent
ketones and between the same ketones.
NMR-spectroscopy has proven to be an
excellent tool for these studies. Since all
a-protons can be exchanged by deuterium
in an acid catalyzed reaction,” a solution
was prepared from acetyl chloride and
heavy water ¢ (solution A), and the halo-
ketones were treated with an excess of this
solution. Only one-phase systems were
studied. The protium-deuterium exchange
was studied at various time intervals. In
addition the time was estimated when the
area under the increasing OH-peak of the
d-acid was the same as the sum of the areas
under all «-C—H-peaks; i.e. half of the «-
protons in the haloketone had exchanged,
(D/H = 1). The time for wvarious halo-
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ketones is given in Table 1. It was rather
independent of the exact proportions of the
components if a sufficient excess of deute-
rium was present; see runs 6 and 7, Table 1.

The parent unhalogenated ketones had
the shortest exchange times. The introduc-
tion of one, two or three halogens decreases
the proton-mobility. No significant differ-
ence between the halogens are observed.
The low value of 1,1-dibromoacetone can be
explained by the acid catalyzed rearrange-
ment of this haloketone to 1,3-dibromo-
acetone.® Deuterium seems to be intro-
duced in the molecule during the rear-
rangement.

The relative mobility of protons within
a molecule can be studied by estimating
the ratio of protons in «- and «’-position
(¢/a’) at various time intervals. In Table 1
these ratios are given for some compounds
at the time D/H = 1. In the beginning of
the reaction the ratio for monohaloace-
tones is 1.5, for 1,1-dihaloacetones 3.0
and for 1,1,3-trihaloacetones 2.0.

It is interesting to note that the ratios
(a/a’) for monohaloacetones are much great-
er than 1.5, for 1,1-dihaloacetones nearly
unchanged, and for 1,1,3-trichloroacetone
smaller than 2. This means that the pro-
tons in groups with one halogen have a
greater mobility than protons in non- or
dihalogenated groups. Taking into account
the statistical factor the mobility of a
CH,X-proton is about twice that of a CH,-
proton or CHX,-proton, which are about
the same.

From these results it can be postulated
that halogenation of monohaloacetones will
preferentially give the 1,1-dihalo- instead of
the 1,3-dihaloacetone.!,3-¢

0
CHXy—C~CH3
[} X2
CHzX~C~CHj3 y 0
CH X~ C~CHaX
]
CX3"C“CH3
It H X2
CHX2 - C—C 3 H @ il
CHX2—C —CHX

In addition the results of the halogenation
of 1,1.dichloroacetones can be explained
from the results of this investigation.®*

Secondary rearrangement influence the
isolated polybromo ketones.%?®

Acta Chem. Scand. 19 (1965) No. 1



