

Fig. 1. The R* versus z curves for NiTe₂, PdTe₂, PtSe₃, and PtTe₃.

ing uncertainties estimated from the curvature of the z,R^* curves, and the shortest interatomic distances are listed in Table 1.

Some comments on the results should

be appropriate:

(i) All samples used for collecting the intensity data in this study, suffered from preferred orientation of the crystals in the glass capillaries. This effect was least significant for PtS₂ and most noteworthy for PdTe₂. Our first sample of PdTe₂, prepared at 500°C, gave $R^* = 0.52$ as the best R^* value; the second sample, heated at 300°C for four days, gave the z,R^* curve shown in Fig. 1. Within the limited accuracy the position of the minimum was the same for the two sets of intensity data. This indicates that the determinations of z in Table 1 are quite reliable despite the relatively high values of R^* shown in Fig. 1.

(ii) The only compound of this investigation having a z parameter markedly different from the ideal value $z=\frac{1}{4}$, is PtS₂. The flatness of the R^* versus z curve for PtS₂ explains why this deviation has not been observed by Grønvold et al.,³ showing clearly that qualitative criteria may be insufficient for accurate structure determinations. (Because of the large difference in the X-ray scattering factors of Pt and S, R^* for PtS₂ is rather insensitive

to the variations in z).

(iii) The reliability index $R^{**}=\Sigma||\sqrt{F_{\rm o}^2}|-|\sqrt{F_{\rm c}^2}||/\Sigma|\sqrt{F_{\rm o}^2}|$ can more easily than R^* be compared with the commonly used $R=\Sigma||F_{\rm o}|-|F_{\rm c}||/\Sigma|F_{\rm o}|$. In the

minima of the z, R^* curves the corresponding values of R^{**} are 0.12, 0.13, 0.083, 0.12, and 0.11 for NiTe₂, PdTe₂, PtS₂, PtSe₂, and PtTe₂, respectively. (R^{**} is 0.095 for PtS₂ at z=0.250).

Acknowledgement. The authors are greatly indebted to Professor Haakon Haraldsen for his kind interest in this study and for placing laboratory facilities at their disposal.

- Thomassen, L. Z. physik. Chem. B 2 (1929) 349.
- Tengnér, S. Z. anorg. allgem. Chem. 239 (1938) 126.
- Grønvold, F., Haraldsen, H. and Kjekshus,
 A. Acta Chem. Scand. 14 (1960) 1879.
- Westrum, E. F., Chou, C., Machol, R. E. and Grønvold, F. J. Chem. Phys. 28 (1958) 498.
- Grønvold, F. and Røst, E. Acta Chem. Scand. 10 (1956) 1620.
- Rae, A. I. M. and Barker, W. W. Acta Cryst. 14 (1961) 1208.
- International Tables for X-Ray Crystallography. III. The Kynoch Press, Birmingham 1962.

Received December 17, 1964.

On the Magnetic Properties of Niobium Selenides and Tellurides

KARI SELTE and ARNE KJEKSHUS

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Oslo 3, Norway

As part of our continued studies of niobium selenides and tellurides ¹⁻⁴ we here report the results of magnetic susceptibility measurements carried out on the existing phases Nb₅Se₄, Nb₃Se₄, Nb_{1+x}Se₂ (0.00 $\leq x \leq$ 0.29 at 25°C), "NbSe₄", Nb₅Te₄, Nb₅Te₄, NbTe₂, and NbTe₄.

Purity of the materials and preparation of the samples have previously been described. The magnetic measurements were made according to the Gouy method at temperatures between 90 and 725°K and at three different maximum field strengths ($H_{\rm max}=4015,4700,$ and 5110 Ø, respectively). The samples were enclosed

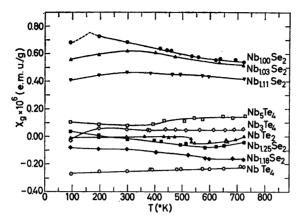


Fig. 1. Magnetic susceptibilities of $Nb_{1.00}Se_2$, $Nb_{1.03}Se_2$, $Nb_{1.13}Se_2$, $Nb_{1.13}Se_2$, $Nb_{1.25}Se_2$, N

in evacuated and sealed Pyrex tubes of 3 mm internal diameter, filled to a height of about 85 mm.

Quantities, sufficient for magnetic susceptibility measurements, of the pure phases Nb₅Se₄, Nb₃Se₄, and "NbSe₄" were not obtained. The magnetic properties of these phases could therefore only be estimated from impure samples. However, preliminary measurements indicate weak, temperature independent paramagnetism for Nb₅Se₄ and Nb₃Se₄, whereas "NbSe₄" is diamagnetic.

Pure samples of the other phases were

Pure samples of the other phases were more easily prepared, and the results of the magnetic susceptibility measurements will be seen from Fig. 1. Diamagnetic susceptibility is found for NbTe₄, whereas Nb_{1+x}Se₂, Nb₅Te₄, Nb₃Te₄, and NbTe₂ show paramagnetic susceptibilities. (Field strength dependent susceptibilities were not observed, and mean values of the susceptibilities at the different field strengths are therefore shown in Fig. 1.)

The experimental curves in Fig. 1 have not been corrected for induced diamagnetism. The expected diamagnetism resulting from the atomic cores was calculated from the diamagnetic corrections -9×10^{-6} e.m.u. per mole Nb⁵⁺ (according to Klemm ⁵), -47.6×10^{-6} e.m.u. per mole Se²⁻, and -70.6×10^{-6} e.m.u. per mole Te²⁻ (according to Angus ⁶). The corresponding core contributions are -0.42×10^{-6} , -0.41×10^{-6} , -0.40×10^{-6} , -0.39×10^{-6} , -0.34×10^{-6} , -0.34×10^{-6} , -0.39×10^{-6} , -0.34×10^{-6}

 $10^{-6}, -0.39 \times 10^{-6}, -0.43 \times 10^{-6},$ and -0.48×10^{-6} e.m.u. per gram $Nb_{1.00}Se_2,$ $Nb_{1.03}Se_2,$ $Nb_{1.11}Se_2,$ $Nb_{1.12}Se_2,$ $Nb_{1.25}Se_2,$ $Nb_{5}Te_4,$ $Nb_{3}Te_4,$ $NbTe_2,$ and $NbTe_4,$ respectively. By subtracting these values from the measured susceptibilities, the total susceptibilities of localized, nonbonding electrons, valence electrons, and conduction electrons are obtained.

The correction for induced diamagnetism of NbTe₄ is of the same magnitude as the observed susceptibility. It is ascertained that no unpaired d-electrons are present on the niobium atoms, and a covalent type of chemical bonding may be suggested. A discussion of the observed magnetic properties and crystal structure of NbTe₄ in terms of the predictions of the general (8-N) rule ⁷⁻⁹ has been given by Selte and Kjekshus.² Their conclusion, based on the crystallographic subcell only, is that the general (8-N) rule is not satisfied for "NbSe₄" must await the determination of accurate composition and crystal structure of this phase.

Nb₅Te₄, Nb₃Te₄, and NbTe₂ show weak, almost temperature independent paramagnetic susceptibilities. Nb₅Te₄ (and Nb₅Se₄) with a crystal structure of the Ti₅Te₄ type ¹⁰ is expected to have a metallic type of bonding, and the observed paramagnetism should consequently be associated with the paramagnetism of the conduction electrons. From the crystal structure of Nb₃Te₄ (or Nb₃Se₄) and the

application of the general (8-N) rule we were expecting the magnetic susceptibility measurements of Nb₃Te₄ to give results corresponding to one unpaired d-electron per formula unit Nb₃Te₄. However, the curve shown in Fig. 1 did not confirm this prediction, as Nb₃Te₄, like Nb₅Te₄, showed weak, almost temperature independent paramagnetism. Further discussion of the bonding in Nb₃Te₄ must be postponed until our planned electrical conductivity measurements have been carried out. For NbTe₂ no detailed discussion of the magnetic data can be made before the crystal structure is known.

The reciprocal, corrected susceptibility versus temperature curve in Fig. 2 shows

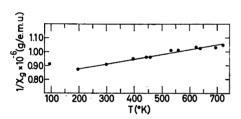


Fig. 2. Reciprocal magnetic susceptibility of Nb_{1.00}Se₂ as a function of temperature.

that the Curie-Weiss Law is almost satisfied for $\mathrm{Nb_{1.00}Se_2}$ above room temperature with a magnetic moment of about 2.4 B.M. and a θ -value of $-330^\circ\mathrm{K}$. At lower temperatures (below $\sim 200^\circ\mathrm{K}$) the curve indicates a transition to an antiferromagnetic state. The "spin only" approximation would demand a magnetic moment of 1.73 B.M. for one unpaired electron on the niobium atoms. The higher value observed can be accounted for by assuming a contribution from an unquenched orbital angular momentum. However, the possible inaccuracy in the diamagnetic corrections hardly justifies a detailed discussion of this discrepancy.

Addition of niobium atoms to Nb_{1.00}Se₂ (i.e. at compositions other than the niobium-poor phase limit of Nb_{1+x}Se₂; cf. Selte and Kjekshus ³) causes a decrease in the magnitude of the observed susceptibilities and changes the Curie-Weiss Law type paramagnetism of Nb_{1.00}Se₂ gradually

to almost temperature independent paramagnetism (for Nb_{1.18}Se₂ and Nb_{1.28}Se₂ after correction for induced diamagnetism; see Fig. 1, where only measurements on the samples Nb_{1.08}Se₂, Nb_{1.11}Se₂, Nb_{1.18}Se₂, and Nb_{1.28}Se₂ are shown for the sake of clearness).

The magnetic properties of the Nb_{1+x}Se₂ phase can be discussed in terms of the general (8-N) rule: With a valence of 5 for Nb and 6 for Se the general (8-N) rule is fulfilled for Nb_{1.00}Se₂, assuming one unpaired d-electron on each niobium atom. Nb_{1.00}Se₂ can thus be described as a normal valence compound in accordance with the observed crystal structure (Selte and Kjekshus³) and predicted to be a semiconductor. Addition of niobium atoms gives rise to gradually filling of the conduction band and simultaneously a delocalization of the unpaired electrons. (Similar observations are made for the $\mathrm{Ta_{1+x}Se_{2}}$ phase by Bjerkelund and Kjekshus.11)

Acknowledgement. The authors wish to thank Professor Haakon Haraldsen for his kind interest in this study and for placing laboratory facilities at their disposal.

- Selte, K. and Kjekshus, A. Acta Chem. Scand. 17 (1963) 2560.
- Selte, K. and Kjekshus, A. Acta Chem. Scand. 18 (1964) 690.
- Selte, K. and Kjekshus, A. Acta Chem. Scand. 18 (1964) 697.
- Selte, K. and Kjekshus, A. Acta Cryst. 17 (1964) 1568.
- Klemm, W. Z. anorg. allgem. Chem. 246 (1941) 347.
- Angus, W. R. Proc. Roy. Soc. (London) A 136 (1932) 569.
- 7. Hulliger, F. and Mooser, E. J. Phys. Chem. Solids 24 (1963) 283.
- 8. Pearson, W. B. Acta Cryst. 17 (1964) 1.
- Kjekshus, A. Acta Chem. Scand. 18 (1964) 2379.
- Grønvold, F., Kjekshus, A. and Raaum, F. Acta Cryst. 14 (1961) 930.
- Bjerkelund, E. and Kjekshus, A. To be published.

Received December 17, 1964.