The Crystal Structure of K₂Ni(CN),

NILS-GÖSTA VANNERBERG

Departments of Inorganic Chemistry, Chalmers Institute of Technology and University of Gothenburg, Gothenburg, Sweden

The crystal structure of $K_2 Ni(CN)_4$ has been determined. The elementary cell is monoclinic with a=4.294 Å, b=7.680 Å, c=13.03 Å and $\beta=87^\circ$ 16′. The space group is $P2_1/c$ No. 14. The structure consists of isolated potassium ions and square planar tetracyano nickelate ions.

Crystal structures of mononuclear nickel(II)cyanide complexes have previously been determined by Brasseur and Rassenfosse, 1,2 [Na₂Ni(CN)₄ · 3H₂O, BaNi(CN)₄ · 4H₂O] and by Lambot 3 [SrNi(CN)₄ · 5H₂O]. The structures of the water free compounds have not been determined. The potassium compound K₂Ni(CN)₄ has been investigated by magnetic and spectrographic methods but not by X-ray methods.

EXPERIMENTAL

Potassium tetracyanonickelate(II) was prepared according to a method given by Fernelius and Burbage. Nickel cyanide was precipitated from a nickel salt solution by the calculated amount of potassium cyanide. The grayish-green precipitate was washed carefully and eventually dissolved in a solution of potassium cyanide. From this solution potassium tetracyanonickelate(II)-1-water crystallized in orange-red monoclinic crystals. The water of crystallisation was removed by heating the crystals to 110°C. The crystals were orange yellow monoclinic and of suitable quality.

Crystallographic data

The X-ray data were obtained from Weissenberg and powder diffraction photographs. A well developed single crystal was rotated about its crystallographic a-axis and the zones detectable with $\text{Cu}K\alpha$ radiation were registered. Multiple film technique was used. The intensities were estimated visually by comparison with known scales. It was found necessary to apply a correction for the varying size of the spots.

With the aid of the elementary cell dimensions obtained from the single crystal data, the powder diffraction pattern could be indexed (Table 1). From the powder pattern the

following cell dimensions were obtained

 $a = 4.294 \pm 0.004 \text{ Å}$ $b = 7.680 \pm 0.008 \text{ Å}$ $c = 13.03 \pm 0.01 \text{ Å}$ $\beta = 87^{\circ} 16' \pm 10'$

Acta Chem. Scand. 18 (1964) No. 10

Table 1. Powder diffraction data for K₂Ni(CN)₄, CuKα-radiation.

$h k l \sin$	$ m n^2m{\Theta}_o\! imes\!10^4$ s	$\sin^2\!\Theta_{ m c}\! imes\!10^4$	$I_{ m o}$	h	\boldsymbol{k}	$l \sin$	$1^2\Theta_{ m o} imes 10^4~{ m s}$	$\sin^2\!\Theta_{ m c}\! imes 10^4$	$I_{ m o}$
0 1 1	136	136	m	$rac{ar{2}}{2}$	0	2	1468	1472	$\mathbf{v}\mathbf{w}$
0 0 2		140		$\overline{2}$	1	2	1573	1573	$\mathbf{v}\mathbf{w}$
0 1 2	241	241	\mathbf{w}	1	3	3		1576	
100	327	323	\mathbf{m}	0	4	0	1613	1612	vvw
$0 \ 2 \ 0$	403	403	\mathbf{m}	$\overline{2}$	1	3	1651	1649	w
0 1 3	418	417	${f st}$	1	0	6		1645	
102	446	443	\mathbf{m}	2	1	3	1763	1768	\mathbf{w}
ī 1 1	468	469	\mathbf{vst}	2	2	2	1792	1794	$\mathbf{v}\mathbf{w}$
Ī 0 2	480	483	\mathbf{m}	0	3	5		1784	
1 1 2	54 6	544	\mathbf{w}	$\overline{f 2}$	2	2	1872	1875	\mathbf{w}
Ī 1 2	585	$\bf 584$	$\mathbf{v}\mathbf{w}$	2	1	4		1874	
0 1 4	$\boldsymbol{662}$	661	\mathbf{m}	1	2	6	1928	1928	\mathbf{w}
1 1 3	708	710	$\mathbf{v}\mathbf{w}$	$\overline{2}$	0	4		1933	
0 2 3	717	719	vvw	$\overline{2}$	1	4	2030	2034	\mathbf{w}
$\overline{1}$ 1 3	767	770	\mathbf{w}	2	1	5		2170	
122	844	$\bf 846$	${f st}$	2	2	4	2174	2176	\mathbf{w}
$\bar{1}$ 2 2	888	886	msv	0	3	6		2169	
1 0 4	923	924	\mathbf{m}	Ī	1	7	2213	2212	\mathbf{w}
$0\ 2\ 4$	$\bf 962$	963	$\mathbf{v}\mathbf{v}\mathbf{w}$	2	0	6	2430	2434	vvw
0 1 5	$\bf 972$	978	$\mathbf{v}\mathbf{w}$	1	3	6		2432	
123	1008	1012	\mathbf{w}	2	3	3	2464	2455	\mathbf{w}
0 3 2	1045	1047	\mathbf{w}	2	2	5		2472	
$\bar{1}$ 2 3	1072	1072	\mathbf{w}	2	1	6	2536	2535	$\mathbf{v}\mathbf{w}$
0 3 3	1218	1223	\mathbf{m}	1	4	4		2536	
$0\ 0\ 6$	1265	1262	\mathbf{m}	0	3	7	2635	$\boldsymbol{2625}$	$\mathbf{v}\mathbf{w}$
$\bar{1}$ 3 1	1272	1275	\mathbf{w}	0	5	2	2659	2659	$\mathbf{v}\mathbf{v}\mathbf{w}$
ī 2 4	1324	1327	w	$rac{2}{2}$	2	6		2838	\mathbf{w}
2 1 1		1408			3	4	2843	2839	
2 1 0	1403	1393	\mathbf{w}	0	5	1	2869	2867	\mathbf{w}
$2 \ 0 \ 2$		1392		0	4	6		2874	
$\overline{2}$ 1 1	1442	1448	$\mathbf{v}\mathbf{w}$						

The systematic extinctions were h0l, absent when l=2n+1, and 0k0 absent when k=2n+1, thus the space group must be $P2_1/c$, No. 14. There are two formula units in the elementary cell.

The structure determination

From a three-dimensional Patterson synthesis the positions of the nickel and potassium atoms were found. A Fourier synthesis based on the signs calculated from the nickel and potassium parameters revealed the positions of all atoms. The unreliability index R became 0.24. After a difference synthesis the R-factor dropped to 0.15. An isotropic temperature factor B=1.7 Ų was used for all atoms. The structure was not refined by least square analysis as this was thought to overtask the intensity material.

The final parameters can be found in Table 3; a comparison of observed and calculated

The final parameters can be found in Table 3; a comparison of observed and calculated structure factors in Table 2. The standard deviations were calculated with Chruicks-

hank's 5 method.

Table 2. Observed and calculated structure factors for $K_2Ni(CN)_4$.

				- SUL GUUGILO IMOUUI		/4*
h k	\boldsymbol{l}	$oldsymbol{F_{o}}$	$oldsymbol{F_{\mathbf{c}}}$	h k l	F_{o}	$oldsymbol{F_{\mathrm{c}}}$
0 0	2	15.3	+ 21.0	8	4.6	+ 6.2
0 0	4	10.7	-10.8	10	2.6	-4.2
	6	26.7	$^{-10.6}_{+17.9}$	11	2.4	
	12	9.1	$+17.8 \\ +12.8$	11	$\overset{2.4}{2.2}$	$^{+}3.2\ -2.4$
0 1	ì	12.9	+13.0	$0 6 \overset{12}{0}$	8.9	
0 1	9	11.2		1	8.1	$^{+}$ 8.9 $^{-}$ 8.0
	2 3	38.9		$\overset{1}{2}$		
	4	27.5	$^{+\ 44.5}_{-25.3}$	3	$\begin{array}{c} \textbf{8.2} \\ \textbf{4.6} \end{array}$	$^{+}$ $^{-}$ $^{5.2}$
	5	11.1	$-25.3 \\ + 11.6$	$\frac{3}{4}$	4.3	
	6	7.0	-7.2	*±	4.0	
	8	4.8	$\begin{array}{cccc} - 7.2 \\ + 6.7 \end{array}$	5 6		+4.6
	9	20.1	$\begin{array}{c} + & 0.7 \\ + & 19.3 \end{array}$	8	$\begin{array}{c} 3.6 \\ 2.4 \end{array}$	$\begin{array}{ccc} + & {f 3.5} \\ + & {f 3.3} \end{array}$
	11	6.6	$\begin{array}{c} + 19.3 \\ + 6.1 \end{array}$	9	2.4 2.3	$^{+}_{-}\ {\overset{3.3}{\scriptstyle 2.2}}$
0 2	0	29.6				
0 2		29.0		10	2.9	+4.1
	1	$\frac{2.7}{7.6}$	+ 0.7	11	1.9	+ 2.8
	2	7.6	+ 8.5	12	1.5	+ 2.8
	2 3 4	10.1	+ 8.4	0 7 1	4.3	+ 4.6
	4	5.2	+ 7.5	$\frac{2}{3}$	3.9	+ 3.7
	5	6.5	+6.2	3	2.4	+ 2.6
	6	23.9	+26.4	4	5.9	- 6.8
	7	8.1	-9.0	5	4.2	+ 4.9
	8	13.7	+ 13.9	7	4.1	+ 6.4
	9	5.7	- 5.8	8	3.9	+ 5.1
	10	3.4	$+ \ \ \overset{\circ}{2.3}$	9	2.9	+ 3.2
	11	4.7	+ 4.6	11	1.9	+ 1.8
	12	6.1	+ 8.0	0 8 1	3.8	- 3.0
	14	3.0	+ 3.9	${ 2 \atop 4 }$	5.0	+ 5.2
03	1	5.5	+ 6.3	4	3.9	+ 4.8
	2	19.2	+ 17.5	5	4.5	\dotplus 4.5
	3	34.6	$+ \ 33.2$	8	2.7	+ 3.9
	4	3.1	— 3.1	0 9 1	7.1	+ 5.7
	5 6	6.3	+ 5.5	2	1.8	+ 1.3
	6	3.7	- 3.9	5	2.1	+1.7
	7	2.6	+ 1.3	1 0 14	9.3	+ 7.8
	8	5.5	+ 6.6	12	5.9	- 0.8
	9	12.4	+ 14.8	10	10.2	+ 8.9
	11	4.7	+6.0	8	31.1	$\stackrel{+}{+} 25.3$
0 4	0	21.2	+16.4	4	6.2	-6.0
	ĺ	24.5	-17.8	$ar{f 2}$	23.3	+ 23.7
	$ar{2}$	9.8	+ 8.3	$\frac{1}{2}$	$\frac{27.6}{27.6}$	+30.1
	4	11.5	$^{+}$ 11.5	<u> </u>	$\frac{21.0}{42.6}$	+42.0
	5	14.3	+14.9	4 2 2 4 6 8	19.5	$^{+}$ 16.1
	6	16.7	+17.1	<u> </u>	6.9	-3.7
	7	4.7	$\begin{array}{c} -6.8 \end{array}$	70	13.5	+10.6
	8	4.5	$-\ 0.3 + 4.7$	$egin{array}{c} \overline{10} \\ \overline{12} \end{array}$	9.8	$^{+}$ 10.0 $^{+}$ 8.6
	11	$\overset{4.6}{4.6}$	$\begin{array}{ccc} + & 1.7 \\ + & 6.0 \end{array}$	1 1 11	14.4	$^{+}$ 14.2
	12	4.0	$^{+}$ 5.1	10		
	13	2.6	$\begin{array}{ccc} + & 3.1 \\ - & 3.3 \end{array}$	5	$\begin{matrix} 7.8 \\ 37.4 \end{matrix}$	+4.6
	14	$\overset{2.0}{2.2}$	$\begin{array}{ccc} -& 3.3 \\ +& 3.4 \end{array}$	3	10.0	$^{+\ 34.6}_{+\ 9.9}$
0 5	14	10.8	+ 0.4 10.4	ა ი		
บอ	2	10.8	+10.4	2 0 1 2 3 5 6	14.7	-10.1
	2		+12.0	Ā	10.8	- 9.5
	3	10.2	+ 9.9	1 2	47.7	+54.7
	4	6.6	-6.8	<u>z</u>	12.1	-11.0
	5	11.7	+11.7	<u>3</u>	19.4	+16.6
	6	$\frac{2.5}{2.5}$	- 2.0	5	8.6	-6.6
	7	3.5	+ 5.5	6	8.6	+ 8.2

Acta Chem. Scand. 18 (1964) No. 10

h k l	$oldsymbol{F_{\mathrm{o}}}$	$oldsymbol{F_{\mathbf{c}}}$	h k l	F_{o}	$oldsymbol{F_{\mathrm{c}}}$
7 8 9 13 1 2 14 8 6 5 4	24.4 7.2 14.2 7.4 5.5 19.5 9.5 6.4 4.8	$\begin{array}{c} -23.9 \\ + 5.2 \\ + 13.6 \\ + 7.6 \\ + 7.7 \\ + 23.2 \\ + 10.2 \\ - 6.7 \\ + 6.1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1 3.9 8.1 11.2 9.1 11.6 7.7 12.6 14.4	$\begin{array}{c} + & 6.2 \\ + & 6.3 \\ - & 9.7 \\ + & 10.7 \\ + & 7.7 \\ + & 11.0 \\ + & 7.3 \\ - & 10.9 \\ + & 14.2 \end{array}$
3 2 1 0 1 2 3 4 6 7 10	20.3 37.4 24.9 11.4 13.6 14.9 22.2 26.4 9.1 4.9	$egin{array}{c} -17.6 \\ +46.4 \\ +21.7 \\ +12.1 \\ +13.1 \\ -10.4 \\ -20.5 \\ +27.5 \\ +10.2 \\ +5.6 \end{array}$	0 1 2 3 4 5 6 7 9 1 6 10 9 8	9.5 9.4 5.5 6.2 9.3 8.7 4.2 4.3 3.9 4.5	$egin{array}{l} + & 9.3 \\ + & 9.2 \\ + & 5.9 \\ + & 8.0 \\ - & 11.9 \\ + & 4.7 \\ + & 5.6 \\ - & 5.6 \\ + & 4.6 \\ \end{array}$
1 3 12 10 9 7 6 5 4	13.7 7.0 4.8 5.1 4.8 8.5 11.7 22.3 12.7 7.7	$\begin{array}{c} +\ 17.1 \\ +\ 8.7 \\ -\ 5.0 \\ +\ 6.5 \\ +\ 6.0 \\ +\ 10.8 \\ -\ 13.7 \\ +\ 19.9 \\ +\ 11.7 \\ +\ 8.7 \end{array}$	7 6 5 4 3	7.1 5.1 3.0 6.6 13.8 5.5 4.5 7.7 10.5 9.8	$egin{array}{cccccccccccccccccccccccccccccccccccc$
2 1 0 1 2 3 5 6 7 8 9	13.6 6.9 14.7 23.8 11.9 16.2 6.8 12.2 11.5 5.0	$egin{array}{c} + 11.1 \\ + 6.7 \\ - 13.0 \\ + 19.1 \\ + 10.1 \\ + 17.0 \\ + 8.4 \\ - 13.9 \\ + 13.9 \\ + 4.6 \\ \end{array}$	2 1 0 2 3 4 5 6 7 9 7 4 3 1	6.0 6.6 6.6 4.2 2.8 3.7 6.5 5.5. 6.6 7.4	$egin{array}{c} -9.7 \\ +7.4 \\ +7.6 \\ +6.9 \\ +5.3 \\ -6.5 \\ +4.4 \\ +7.5 \\ +5.5 \\ +7.8 \\ +10.1 \end{array}$
. 13 1 4 14 13 8 7 6 4 3 2	8.3 4.3 4.0 2.6 8.5 8.4 2.7 12.8 5.8	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1 8 6 0 2 3	5.1 5.5 4.5 4.0 3.9 3.5 4.5 6.5 4.1	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1 0 3 4 5 6 7 8 9	25.6 9.4 10.2 10.4 15.5 3.8 11.4 3.0 4.3 4.6	$egin{array}{l} + 21.6 \\ + 8.2 \\ + 10.4 \\ - 10.2 \\ + 14.4 \\ + 3.3 \\ + 13.0 \\ + 5.9 \\ + 5.6 \\ - 6.5 \\ \hline \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8 4.5 3.9 21.6 13.4 30.5 3.2 32.3 28.4	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Acta Chem. Scand. 18 (1964) No. 10

h k	<i>l</i>	$oldsymbol{F_o}$	$oldsymbol{F_c}$	h k l	F_{o}	$oldsymbol{F_{\mathbf{c}}}$
2 1		23.0 15.2 27.6 9.3 10.1	$egin{array}{c} +\ 20.1 \\ +\ 13.5 \\ +\ 23.1 \\ +\ 9.0 \\ +\ 8.9 \end{array}$	$\begin{array}{c} \overline{5} \\ \overline{7} \\ \overline{8} \\ \overline{10} \\ \overline{11} \end{array}$	6.8 7.4 6.8 4.2 3.8	$egin{array}{c} + & 9.3 \\ -10.7 \\ + & 11.5 \\ + & 7.6 \\ + & 5.9 \end{array}$
	3 2 1	5.5 11.7 32.0 8.0 22.5	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 2 & 5 & 13 & & \\ & & 11 & & \\ & & 10 & & \\ & & 9 & & \end{array}$	3.8 4.3 3.8 4.1 7.1 6.8	$\begin{array}{c} + & 5.3 \\ + & 6.2 \\ + & 2.1 \\ + & 8.5 \\ - & 6.7 \\ + & 4.8 \\ + & 6.9 \end{array}$
	$ \begin{array}{r} 0 \\ \hline{1} \\ \hline{4} \\ \hline{5} \\ \hline{7} \\ \hline{8} \\ \hline{11} \end{array} $	17.1 18.8 12.0 10.0 11.6	-18.4 + 20.0 + 12.9 + 8.8 + 11.0	8 7 . 6 4 3 2	6.8 6.8 4.3 8.4 14.7	$\begin{array}{c} + & 4.2 \\ + & 9.6 \end{array}$
2 2	31 10 9 6 5 4	10.8 13.5 9.8 6.1 10.2	$egin{array}{c} +\ 11.9 \\ +\ 13.9 \\ +\ 10.2 \\ +\ 5.0 \\ -\ 9.4 \end{array}$	3 2 1 0 1 2 3 4 5 7 8 9 10 2 6 4	12.3 4.1 8.1 7.5 7.8	$-14.4 \\ +10.0 \\ +2.4 \\ +8.5 \\ +8.9 \\ +9.5$
	4 2 0 2 3	26.5 16.9 7.7 20.9 6.7	$egin{array}{l} + 24.6 \\ + 16.9 \\ + 9.4 \\ + 22.9 \\ + 3.4 \\ + 13.4 \end{array}$	4 5 7 8 9	7.3 6.2 7.5 4.3 4.2	$egin{array}{ccccc} + & 9.5 \\ - & 7.1 \\ + & 8.1 \\ + & 10.0 \\ + & 5.3 \\ + & 7.5 \end{array}$
2 3	2 0 2 3 4 7 8 10 13	10.5 7.2 8.9 10.1 4.2	$egin{array}{cccc} -& 5.2 \\ +& 9.1 \\ +& 11.8 \\ +& 6.7 \end{array}$	$egin{array}{cccc} ar{10} & & & & & & & & & & & & & & & & & & &$	3.8 7.2 7.9 7.9 7.2	$\begin{array}{c} + & 7.5 \\ - & 6.8 \\ + & 8.3 \\ + & 7.4 \\ + & 6.3 \\ + & 7.3 \\ + & 1.5 \end{array}$
	8 7 6	6.8 16.4 4.3 15.1 10.5	$egin{array}{l} -6.8 \\ +19.2 \\ +4.1 \\ +15.8 \\ -8.8 \\ \hline \end{array}$	3 2 1 0 1 2 3 4 5 7 8 0 7 8 7 8 7 6	4.3 6.1 11.4 6.1 6.4	$\begin{array}{c} + 1.5 \\ + 6.1 \\ -11.4 \\ + 5.0 \\ + 7.2 \\ + 6.1 \end{array}$
	$\begin{array}{c} 1\\0\\\overline{1}\\\overline{2}\\\overline{3} \end{array}$	26.5 11.1 11.4 10.3 6.3	$\begin{array}{c} + \ 24.0 \\ + \ 9.4 \\ + \ 11.1 \\ + \ 9.9 \\ + \ 4.9 \end{array}$	4 5 7 8 10	6.0 5.9 4.1 3.7 3.1	$\begin{array}{c} + & 9.0 \\ - & 3.8 \\ + & 6.5 \end{array}$
2 4	5 2 1 0 1 2 3 4 5 7 8 12	8.0 14.0 8.7 4.9 5.4	$\begin{array}{c} -8.9 \\ +15.2 \\ +15.2 \\ +6.1 \\ +5.4 \end{array}$	2 7 8 7 6 5 4	5.5 3.7 5.4 6.2 6.3	$ \begin{array}{r} + 3.3 \\ - 6.9 \\ + 2.8 \\ + 4.1 \\ + 7.0 \\ + 6.4 \end{array} $
	11 10 5 4	5.9 7.9 12.7 13.8 10.9	$ \begin{array}{c} - 8.1 \\ + 12.1 \\ - 14.6 \\ + 13.0 \\ + 9.0 \end{array} $	5 4 3 2 1 1 2 3 4 2 8 6 5	7.6 7.6 6.5 7.1	$ \begin{array}{r} + 8.4 \\ - 6.5 \\ + 6.0 \\ + 7.9 \\ + 3.1 \end{array} $
	3 1 0 1 2 3 4	16.3 15.3 6.6 14.2 12.8	$egin{array}{c} + 14.2 \\ + 14.3 \\ + 7.2 \\ - 14.0 \\ + 14.6 \end{array}$	$\begin{array}{ccc} & \overline{3} \\ \overline{4} \\ 2 & 8 & 6 \\ 5 & 0 \end{array}$	4.2 6.3 6.2 7.1 6.0 6.6	$ \begin{array}{c} + & 7.8 \\ - & 7.5 \\ + & 8.3 \\ - & 5.3 \\ + & 10.1 \end{array} $
	$\frac{\tilde{3}}{4}$	5.4 7.9	$+\ {3.3} \\ +\ 10.2$	$\frac{0}{6}$	4.5	+ 7.6

Table 3. Fra	ctional atomic	parameters	for	K.Ni(CN)
--------------	----------------	------------	-----	----------

Atom	Position	x	y	z
Ni	8.	0	0	0
\mathbf{K}	е	0.281	0.046	0.341
$\mathbf{C_1}$	e	0.167	0.207	0.055
C,	е	0.849	0.382	0.390
\mathbf{N}_{1}	е	0.261	0.338	0.082
N_2	е	0.764	0.300	0.327

Table 4. Bond distances in K₂Ni(CN)₄.

Ni(1)-0	$C_1(1)$	1.	90 =	± 0.03	Α	
Ni(1) = 0	$C_2(4)$	1.	84 -	± 0.03		
Ni(3)0	$\mathbb{C}_{s}(5)$	3.	96 -	± 0.03		
Ni(1) = 0	$C_1(5)$	3.	95 -	+ 0.03		
Ni(1) -	Ni(5)	4	294			
	212(0)					
C(1)	$N_1(1)$	1	15 _	L 0 05		
O(1)	111	1.	10 -	_ 0.05		
$C_2(1) - 1$	$N_2(1)$	1.	11 :	± 0.03		
TZ (0)	NT (1)	0	00			
K(3) —	$N_1(1)$	z.	90 -	± 0.04		
K(3) —	$N_1(5)$	2.	76 <u>-</u>	± 0.04		
K(3) = 1	$N_2(1)$	2.	91 -	± 0.04		
K(1) -1	$N_2(1)$	2.	85 -	± 0.04		
$\mathbf{K}(3)$ —	$N_2(3)$	2.	87 -	+ 0.04		
K(1) -	$N_1(4)$	3.	26 -	- 0.04		
	enotes a					r 11 2
	»					x, y, z x, y, z
						$\bar{x}, \frac{1}{2} + y, \frac{1}{2} - z$
$A_1(4)$	»	»	*	»	»	$x, \frac{1}{2}-y, \frac{1}{2}+z$
$A_1(5)$	»	*	*	*	»	1+x, y, z

Table 5. Bond angles in K₂Ni(CN)₄.

$Ni(1) - C_1(1) - N_1(1)$	$175\pm6^\circ$
$Ni(1) - C_2(4) - N_2(4)$	$175\pm6^{\circ}$
$C_2(4) - Ni(1) - C_1(1)$	$88\pm3^\circ$
$C_2(4) - Ni(1) - C_1(2)$	$92\pm3^\circ$
$C_1(1) - Ni(1) - C_1(2)$	180°
$C_2(4) - Ni(1) - C_2(3)$	180°

DESCRIPTION OF THE STRUCTURE

The nickel atoms are surrounded by four cyanide groups situated in the same plane. Within the limits of error the coordination is square planar. The tetracyanonickelate ions are then packed in such a way that the nickel atoms have four carbon atoms at distances about 3.95 Å. These carbon atoms belong to complex ions situated in the neighbouring elementary cells in the a-axis direction. The distance between two adjacent nickel atoms is 4.294 Å (the length of the a-axis). A potassium ion is surrounded by six nitrogen atoms

which form an octahedron. Bond distances can be found in Table 4, bond angles in Table 5.

Each complex ion has six potassium ions as nearest neighbours. These six atoms form a distorted octahedron. Two of the faces of this octahedron are parallel to the (100) plane. Each potassium ion has three complex ions as nearest neighbours. The coordination is accordingly similar to that in the rutile structure.

DISCUSSION

The structure is built up of potassium ions and isolated tetracyanonickelate ions. The distances between a nickel atom and the non-metallic atoms in the other complex ions are too large to allow anything but weak van der Waals bonds. The distance between two nickel atoms in adjacent complex ions, 4.294 Å, is much longer than the 3.245 Å found in crystalline nickel dimethylglyoxime where there can be weak nickel-nickel interactions. The average bond distances nickel-carbon, 1.86 Å, and carbon-nitrogen 1.13 Å, are in good agreement with those found in SrNi(CN)₄ · 5H₂O,³ 1.85 Å and 1.18 Å, respectively, but deviate appreciably from those found in Na₂Ni(CN)₄ · 3H₂O,² 1.95 Å and 1.30 Å, respectively.

Acknowledgements. I thank Mrs. Margareta Biéth for her skilful assistance.

REFERENCES

- 1. Brasseur, H. and de Rassenfosse, A. Bull. Soc. France Mineral 61 (1938) 129.
- 2. Brasseur, H. and de Rassenfosse, A. Mem. Soc. Roy. Sci. Liége 4 (1941) 447.
- Lambot, H. Bull. Soc. Roy. Sci. Liége 12 (1943) 522.
 Fernelius, W. C. and Burbage, J. J. in Fernelius, W. C. Inorganic Syntheses Vol. II McGraw-Hill Book Company, N. Y. 1946, p. 227.
 Cruickshank, D. W. J. Acta Cryst. 2 (1949) 65.
- 6. Godycki, L. E. and Rundle, R. E. Acta Cryst. 6 (1953) 487.

Received September 5, 1964.