On the Arsenides and Antimonides of Niobium ### SIGRID FURUSETH and ARNE KJEKSHUS Kjemisk Institutt A, Universitetet i Oslo, Blindern, Norway The phase relationships in the systems niobium-arsenic and niobium antimony have been studied by X-ray methods. Density determinations and magnetic susceptibility measurements have been carried out. Three new, intermediate phases have been identified: 1. NbAs₂, with monoclinic structure, a = 9.357 Å, b = 3.3823 Å c = 7.792 Å, $\beta = 119.46^{\circ}$. The pycnometric density is 7.41 g cm⁻³ at 25°C. The unit cell contains four formula units and the possible space groups are C2, Cm, and C2/m. 2. Nb₆Sb₄, with tetragonal Ti₅Te₄ type structure, a = 10.314 Å, c = 3.5566 Å. The pycnometric density is 8.17 g cm⁻³ at 25°C. 3. NbSb₂, with monoclinic structure, a = 10.239 Å, b = 3.6319 Å, c = 8.333 Å, b = 120.07° The pycnometric density is 8.22 g cm⁻³. c = 8.333 Å, $\beta = 120.07^{\circ}$. The pyenometric density is 8.22 g cm⁻³ at 25°C. The unit cell contains four formula units and the possible space groups are C2, Cm, and C2/m. The lattice dimensions and observed densities of the NbAs and Nb_sSb phases are: NbAs, a = 3.4517 Å, c = 11.680 Å, $d_{\rm pycn} = 7.93$ g cm⁻³ Nb₃Sb, a = 5.2643 Å, $d_{\rm pycn} = 8.83$ g cm⁻³ The NbAs, NbAs₂, and NbSb₂ phases have diamagnetic susceptibilities, whereas the Nb₃Sb and Nb₅Sb₄ phases show weak temperature-independent paramagnetism. When this investigation was started the existence of only one niobium arsenide (with composition NbAs_{1.80}) had been described in the literature. Studies of this system have, however, since then been independently carried out by Boller and Parthé² and the present authors.³ As a result of these studies the crystal structure of NbAs is now known. The existence of a niobium antimonide phase, i. e. the Nb₃Sb phase, has been reported by Matthias et al. 4, Wood et al. 5, and Nevitt. 6 ### **EXPERIMENTAL** Materials. The niobium metal used in this study was "Spectrographically standardized niobium" from Johnson, Matthey & Co., Ltd. Two batches of this niobium (here called I and II) were used. According to the supplied analysis niobium I contained 250 ppm of Ni and traces of Cu, Ag, Ti, Fe, and Si, whereas niobium II contained (in ppm): Fe (500), Si (100), Pb (80), Mg (2), Mn (1), and Ta (100). Niobium II, which originally contained $NbH_{0.89}$, had been dehydrogenated 7 in vacuum, but contained nevertheless traces of hydrogen. The metallic arsenic was delivered by American Smelting and Refining Co. and reported to contain 99.999 % arsenic. The only reported impurities were a very faint trace of Cu and Pb. The high purity antimony from Bradley Mining Co., San Francisco, con- tained (in ppm): As (10), Cu (3), Fe (3), and Pb (2). Preparation. The samples were prepared by heating accurately weighed quantities of niobium and arsenic or antimony, respectively, in evacuated and sealed silica tubes. In some cases crucibles of pure alumina were placed inside the silica tubes. Samples with composition 20.00, 25.00, 33.33, 40.00, 50.00, 60.00, 66.67, and 75.00 atomic % As were made from niobium I and samples with 20.00, 25.00, 28.57, 33.33, 40.00, 44.44, 50.00, 55.56, 60.00, 66.67, and 75.00 atomic % As were made from niobium II. All samples were first heated at 1000°C for 2 days, then at 720°C for 14 days and finally quenched in ice water. Samples with composition 20.00, 25.00, 33.33, 40.00, 50.00, 60.00, 66.67, and 75.00 atomic % Sb were made from niobium I and samples with 20.00, 25.00, 28.57, 33.33, 40.00, 44.44, 50.00, 55.56, 60.00, 66.67, and 75.00 atomic % Sb were made from niobium II. These samples were first heated at 1000°C for 2 days then at 800°C for 14 days and finally quenched in ice water. A similar series of niobium (II) antimonide samples was slowly cooled from 800°C to room temperature over a period of 30 days. Niobium (II) antimonides containing 16.67, 20.00, 25.00, 33.33, 38.46, and 40.00 atomic % Sb were melted in a carbon resistance (Nernst-Tammann) furnace at approximately 1350°C. (The temperature was measured with an optical pyrometer.) When the furnace reached the desired temperature, the sample was removed and quenched in water. X-Ray diffraction. All samples were crushed and X-ray photographs were taken in a Guinier focusing camera of 80 mm diameter using strictly monochromatized $CuKa_{1-}$ radiation. X-Ray photographs were also taken in a Weissenberg camera with 57.3 mm diameter and in a Debye-Scherrer camera with 114.6 mm effective diameter and asymmetric film mounting. For the calculation of lattice constants by the Guinier method, potassium chloride (Analar, The British Drug Houses Ltd., a = 6.2919 Å⁸) was added to the specimen as an internal standard. Lattice constants are expressed in Angström units on the basis of λ (Cu Ka_1) = 1.54050 Å. Density measurements. The density of the samples was determined by the pycnometric method at 25°C with kerosene as displacement liquid. To remove gases adsorbed by the sample the pycnometer was filled with kerosene under vacuum. The samples weighed from 2 to 3 g. Magnetic measurements. The magnetic susceptibilities were measured by the Gouy method at three different maximum field strengths ($H_{\text{Max}} = 4015, 4700, \text{ and } 5110 \text{ }\emptyset$). The samples were filled in evacuated and sealed Pyrex tubes of 3 mm internal diameter and to a height of about 85 mm. #### RESULTS ## A. Niobium arsenides In the niobium-arsenic system two intermediate phases, i.e. the NbAs phase and the NbAs₂ phase, were identified. The specific volume versus weight % As, cf. Fig. 1, had breaks in the linearity at these compositions. By inspection of the curve, the presence of a third phase with an approximate composition Nb₃As might be suggested. This interpretation is impeded, however, by an interfering reaction between niobium and silica for metal content higher than ~50 atomic % Nb. (The disturbing reaction with silica could be avoided by use of the hydrogen-free niobium I. In this case, however, the samples did not reach equilibrium, probably because of too large particle size of niobium I. Experiments showing the importance of the particle size Fig. 1. Reciprocal densities as function of composition for niobium-arsenic samples quenched from 720°C (O). The density of NbAs (△) prepared by thermal decomposition of NbAs₂ at 1100°C and the densities of NbAs and NbAs₂ (●) calculated from the X-ray data are included. of the niobium metal in the reaction have been carried out and will be published in a forthcoming paper.) Most samples in this concentration range contained a mixture of three phases, i.e. the NbAs phase, the NbO phase and the Nb₅Si₃ phase.⁹ (The NbO and Nb₅Si₃ phases have lower densities than the Nb and NbAs phases and may thus provide a qualitative explanation of the first decrease in density below 44.64 weight % As (50 atomic % As) in Fig. 1.) Guinier photographs of some samples contain reflections from a yet unidentified phase (different from SiO₂ (see section B), Nb, NbO, Nb₅Si₃, NbAs, and NbAs₂). It was unfortunately rather difficult to obtain consistent, reproducible results. Before any conclusive statements can be given a new investigation with pure hydrogen-free niobium has to be undertaken for arsenic content < 50 atomic % As. The NbAs phase. Guinier photographs of the NbAs phase were indexed on the basis of a tetragonal unit cell, cf. Table 1. The lattice constants of the sample with composition NbAs are found in Table 2, together with the lattice constants of the NbAs phase from samples where NbAs is in equilibrium with other phases. The lattice dimensions being approximately constant show that the homogeneity range must be rather narrow. The unit cell dimensions given by Boller and Parthé, included in Table 2, are in perfect agreement with the values found in this study. Table 1. Guinier photograph data of NbAs taken with strictly monochromatized $\text{Cu}K\alpha_1$ -radiation. | $I_{ m obs}$ | sin²⊖ | hkl | | |----------------|--------|--------|-----| | | obs | calc | | | st | 5 414 | 5 414 | 101 | | st | 6 958 | 6 962 | 004 | | vst | 8 893 | 8 894 | 103 | | \mathbf{vst} | 11 701 | 11 698 | 112 | | \mathbf{vst} | 15 859 | 15 854 | 105 | | st | 19 923 | 19 918 | 200 | | w | 25 329 | 25 331 | 211 | | \mathbf{m} | 26 303 | 26 296 | 107 | | m | 26 874 | 26 880 | 204 | | w | 27 854 | 27 840 | 008 | | $I_{ m obs}$ | sin²0 | hkl | | |--------------|--------|--------|-------| | | obs | calc | 10100 | | m | 28 798 | 28 812 | 213 | | m | 35 778 | 35 772 | 215 | | \mathbf{m} | 39 838 | 39 836 | 220 | | w | 40 250 | 40 209 | 109 | | vw | 45 208 | 45 249 | 301 | | m | 46 208 | 46 212 | 217 | | w | 46 808 | 46 795 | 224 | | w | 47 758 | 47 758 | 208 | | w | 48 726 | 48 733 | 303 | Table 2. Lattice constants of the NbAs phase. | Sample | a (Å) | c (Å) | c/a | |--|------------------|------------------|------------------| | $egin{array}{l} { m NbAs}^a \ { m NbAs}^b \end{array}$ | 3.4517
3.4523 | 11.680
11.677 | 3.3838
3.3824 | | $\mathrm{Nb_{3}As^{c}}$ | 3.4521 | 11.676 | 3.3822 | | NbAs _{1.25} ^c | 3.4518 | 11.676 | 3.3826 | | $\mathrm{Nb}\mathrm{As}^d$ | 3.452 | 11.67, | 3.384 | $[^]a$ Thermal decomposition of NbAs₂ at 1100°C. b Thermal decomposition of NbAs₂ in a carbon resistance furnace at 1300°C. c Quenched from 720°C. d Quoted from Boller and Parthé. 2 As the reaction between niobium and silica was noticed already at a concentration of \sim 54.5 atomic % As, we could not at this stage distinguish between a sharp stoichiometric or slightly non-stoichiometric composition. Some samples of the NbAs phase were therefore made by thermal decomposition of NbAs₂. The residual crystalline phase was found to contain only NbAs after complete degradation at 1100° C. The composition NbAs was ascertained by density measurements. The pycnometric densities of NbAs prepared by direct synthesis and thermal decomposition of NbAs₂ were 7.83 and 7.93 g cm⁻³, respectively, in close agreement with the density 8.01 g cm⁻³ calculated for NbAs_{1.00} from the X-ray data (assuming four $(Z_c = 3.96)$ NbAs-groups per unit cell). Further evidence of the composition NbAs_{1.00} is obtained through the structure determination.^{2,3} Missing reflections on the photographs were: ``` hkl when k + k + l = 2n + 1 hkl when 2k + l = 2n or 4n + 1 0kl when (k + l = 2n + 1) hkl when (2k + l = 2n \text{ or } 4n + 1) ``` The space group is $I4_1$ or $I4_1md$. The crystal structure of NbAs has been discussed previously. ^{2,3} (A projection of the NbAs structure is shown in Fig. 4 for comparison with the Ti_5Te_4 type structure of Nb_5Sb_4 . In either of the two space groups 4Nb are in (a) with z=0, and 4As are in (a) with $z=0.416 \pm 0.001 \approx 5/12$.) The NbAs₂ phase. Guinier photographs of the NbAs₂ phase were indexed as monoclinic, cf. Table 3. The lattice constants of NbAs₂ are listed in Table 4 together with the lattice constants of the NbAs₂ phase for the samples NbAs_{1.25} and NbAs₃ with NbAs₂ in equilibrium with NbAs and As, respectively. The homogeneity range of the NbAs₂ phase is rather narrow, according to the almost invariable unit cell dimensions. Table 3. Guinier photograph data of NbAs₂ taken with strictly monochromatized $CuK\alpha_1$ radiation. | I_{obs} | $\sin^2\!\Theta$ | $\sin^2\!\Theta imes10^5$ | | $I_{ m obs}$ | sin² Θ | × 10 ⁵ | hkl | |------------------------------|------------------|----------------------------|---|--------------|------------------|-------------------|---| | - 005 | obs | calc | hkl | - ODS | obs | calc | | | w | 1 291 | 1 289 | 001 | w | 21 161 | 21 183 | $31\overline{4}$ | | \mathbf{m} | 2 754 | 2 753 | $20\overline{1}$ | \mathbf{m} | 21 471 | 21 508 | 203 | | w | 3 572 | 3 576 | 200 | \mathbf{m} | 22 127 | 22 129 | $51\mathbf{\bar{2}}$ | | w | 4 502 | 4 508 | $20\overline{2}$ | w | 22 454 | 22 477 | $11\overline{4}$ | | $\mathbf{v}\mathbf{w}$ | 5 151 | 5 155 | 002 | w | 23 497 | 23 491 | $22\overline{1}$ | | w | 6 076 | 6 078 | 110 | vw | 24 323 | 24 317 | 220 | | $\mathbf{v}\mathbf{w}$ | 6 309 | 6 312 | 111 | \mathbf{w} | 24 687 | 24 665 | $60\overline{2}$ | | \mathbf{vst} | 8 419 | 8 423 | 11 <u>1</u> | w | 25 223 | [25 240 | $20\overline{5}$ | | m | 8 836 | 8 841 | $20\overline{3}$ | 1 " | | 25 249 | $22\overline{2}$ | | \mathbf{st} | 9 128 | 9 123 | $\begin{array}{c} 11\overline{2} \\ 40\overline{2} \end{array}$ | vw | 25 402 | 25 408 | $40\overline{5}$ | | \mathbf{st} | 11 014 | 11 011 | 402 | vw | 27 040 | 27 039 | $51\overline{4}$ | | \mathbf{st} | 11 361 | 11 351
11 367 | $egin{array}{c} 31\overline{1} \ 40\overline{1} \end{array}$ | w
w | 27 141
27 464 | 27 132
27 463 | $\begin{array}{c} 60\overline{1} \\ 60\overline{4} \end{array}$ | | \mathbf{st} | 11 600 | 11 599 | 003 | w | 27 546 | 27 530 | 510 | | m | 12 053 | 12 051 | $31\bar{2}$ | w | 27 889 | 27 901 | 402 | | \mathbf{st} | 13 228 | | $\begin{array}{c} 310 \\ 403 \end{array}$ | m | 29 591 | {29 582
29 616 | $\begin{array}{c} \mathbf{22\overline{3}} \\ \mathbf{31\overline{5}} \end{array}$ | | m | 13 337 | 13 345 | 112 | \mathbf{m} | 31 768 | 31 752 | $\mathbf{42\overline{2}}$ | | m | 14 292 | 14 300 | 400 | w | 32 171 | 32 176 | 600 | | \mathbf{m} | 14 500 | 14 511 | 113 | \mathbf{m} | 32 343 | 32 340 | 023 | | \mathbf{st} | 15 330 | 15 328 | $31\overline{3}$ | w | 32 719 | 32 728 | $60\overline{5}$ | | \mathbf{w} | 15 731 | 15 751 | $20\overline{4}$ | m | 33 982 | 33 974 | $42\overline{3}$ | | \mathbf{w} | 19 791 | 19 812 | 401 | m | 34 093 | 34 097 | 511 | | $\operatorname{\mathbf{st}}$ | 20 745 | 20 741 | 020 | | 1 | | | | Sample | a (Å) | b (Å) | c (Å) | β (°) | |--|-------|--------|-------|--------| | $egin{array}{c} \mathbf{NbAs_{1\cdot 25}} \\ \mathbf{NbAs_{2}} \\ \mathbf{NbAs_{3}} \end{array}$ | 9.356 | 3.3824 | 7.792 | 119.44 | | | 9.357 | 3.3823 | 7.792 | 119.46 | | | 9.357 | 3.3827 | 7.792 | 119.45 | Table 4. Lattice constants of the NbAs₂ phase (in samples quenched from 720°C). The observed density of NbAs₂, 7.41 g cm⁻³, indicates that the unit cell contains four ($Z_c = 3.96$) NbAs₂-groups. The calculated density of NbAs₂ from the X-ray measurements is 7.50 g cm⁻³. The systematic extinctions were of the type: hkl absent when h + k = 2n + 1h0l absent when (l = 2n + 1) 0k0 absent when (k=2n+1) Characteristic space groups are accordingly C2, Cm, and C2/m.* * Note added in proof. While this article has been in press an independent confirmation of the existence of the NbAs and NbAs₂ phases has been published by Saini et al.²³ Their lattice dimensions and observed densities are: | | a (Å) | b (Å) | c (Å) | $oldsymbol{eta}$ (°) or c/a | $d_{ m obs} \ ({ m g~cm}^{-3})$ | |----------|---|--|-------------------------|---|---------------------------------| | NbAs | ${3.453} \\ {\pm 0.002}$ | | $^{11.672}_{\pm 0.005}$ | 3.380 | 8.11 | | $NbAs_2$ | $\begin{array}{c} 9.354 \\ \pm 0.002 \end{array}$ | $egin{array}{c} {\bf 3.381} \ \pm 0.002 \end{array}$ | $^{7.799}_{\pm 0.002}$ | $\begin{array}{c} \textbf{119.43} \\ \pm \textbf{0.08} \end{array}$ | 7.01 | ### B. Niobium antimonides In the niobium-antimony system the existence of two new, intermediate phases was established, *i.e.* the Nb₅Sb₄ phase and the NbSb₂ phase. Furthermore, the existence of the previously described ^{4–6} Nb₃Sb phase was confirmed. The results of density measurements of two series of alloys for phase analysis are shown in Fig. 2. The specific volume *versus* weight % Sb plot had breaks in the linearity at compositions corresponding to NbSb₂ and ~Nb₃Sb. The results from the two series did not differ much, *cf.* Fig. 2. An inspection of the Guinier photographs of these alloys showed that the samples contained phases which did not belong to the niobium-antimony system. For samples with composition ≤ 60 atomic % Sb crystallization of the silica tubes was noticed. Samples with antimony content ≤ 50 atomic % Sb contained furthermore two more phases, *i.e.* the NbO phase and the Nb₅Si₃ phase. The disturbing reactions with silica leading to these phases could best be reduced by placing the alloys in alumina crucibles inside the silica tubes, or by use of niobium I. (Samples containing niobium I did not reach equilib- Fig. 2. Reciprocal densities as function of composition for two series of niobium-antimony samples quenched (O) and slowly cooled (\square) from 800°C and one series synthesized in carbon resistance furnace (∇) at 1350°C. The densities of Nb₃Sb and Nb₅Sb₄ (\triangle) prepared by thermal decomposition of NbSb₂ at 850 and 1000°C, respectively, and the densities of Nb₃Sb, Nb₅Sb₄, and NbSb₂ (\blacksquare) calculated from the X-ray data are included. rium.) To make the period of heating short the carbon resistance furnace was used when preparing the third series of alloys. As seen from Fig. 2 the densities of samples made according to this method differ considerably from the two previous series. However, the results are not entirely reproducible and the formation of foreign phases is not eliminated. The phase analytical work by density measurements has therefore failed to bring out the existence of other phases than the NbSb₂ phase. The observed densities of the two first series of alloys are rather different from those calculated from the X-ray data. Our tentative explanation of these discrepancies is simple and instructive and will be briefly outlined here. The presence of small quantities of crystallized SiO₂, the NbO phase, and the Nb₅Si₃ phase with lower densities accounts for a density depression of the samples. The largest effect is due to the presence of silica which has a considerably lower density than the niobium antimonides. A regular variation in the specific volume versus weight % Sb plot was noticed in Fig. 2. By inspection a correlation between the weight of niobium metal in the alloys and the density depression was observed. As seen from Fig. 3, $(d_{\text{calc}}-d_{\text{obs}})$ increases with increasing weight of niobium. As the largest Fig. 3. The density depression $(d_{\text{calc}} - d_{\text{obs}})$ as a function of the total weight of niobium in the niobium-antimony samples prepared at 800°C. contribution to the density depression is undoubtedly due to the presence of silica, it is suggested that the crystallization of silica is proportional to the amount of niobium. The simple proportionality is masked by the presence of the NbO and Nb $_5$ Si $_3$ phases. A corresponding observation was not made in the niobium-arsenic system (see p. 1182). The presence of crystallized SiO_2 could not be observed in the Guinier photographs of the niobium arsenides. This is consistent with observations 10 from many other similar systems where it is found that the amount of crystallized SiO_2 also depends on the metalloid component. The visible attack in silica tubes increases according to this observation from arsenic to antimony. Furthermore, the amount of niobium used to prepare the arsenides was almost constant $(1.0-1.3~\mathrm{g})$ and also smaller than for the antimonides. The Nb_3Sb phase. Guinier photographs of samples with antimony content less than 44 atomic % Sb showed the presence of a phase which could be indexed on the basis of a cubic unit cell. The lattice constants for two samples Nb_4Sb and Nb_2Sb are listed in Table 5. The indexed reflections are no doubt due to the Nb_3Sb phase. It was impossible to produce the samples free from the interfering SiO_2 , NbO, and Nb_5Si_3 phases by heating the elements in the stoichiometric 3:1 ratio in silica tubes. This finding is in agreement with the previous reports $^{4-6}$ on the Nb_3Sb phase. Improved results were obtained when using alumina crucibles placed inside the silica tubes and short heat treatment in the carbon resistance furnace. However, the purest samples of the Nb₃Sb phase were obtained by thermal decomposition of the NbSb₂ phase. The residual dark grey powder prepared by complete degradation at 1000°C contained the Nb₃Sb phase and only | Sample | a (Å) | Method of preparation | |--|---|---| | Nb ₃ Sb
Nb ₃ Sb
Nb ₄ Sb
Nb ₂ Sb | 5.2643
5.2648
5.2649
5.2649 | Thermal decomposition of NbSb ₂ at 1000°C Al ₂ O ₃ crucibles and carbon resistance furnace Quenched from 800°C Quenched from 800°C | | Nb ₃ Sb
Nb ₃ Sb
Nb ₃ Sb | $\begin{array}{c} 5.26 \\ 5.262 \pm 0.002 \\ 5.2621 \pm 0.0003 \end{array}$ | Quoted from Matthias et al. ⁴
Quoted from Wood et al. ⁵
Quoted from Nevitt ⁶ | Table 5. Lattice constant of the Nb₃Sb phase. traces of Nb₅Sb₄, NbO, and Nb₅Si₃. The lattice constant of this sample is found in Table 5 together with the lattice constant of the sample Nb₃Sb prepared in the carbon resistance furnace and those of previous determinations.⁴⁻⁶As the lattice constant is almost invariable as regards specimens with different initial proportions of the components and different method of preparation, no composition range of the Nb₃Sb phase is noticeable. The accordance with the previous values is reasonable although the present values fall beyond the limits of error given by Wood *et al.* ⁵ and Nevitt.⁶ The pycnometric density of the sample prepared by thermal decomposition of NbSb₂ is 8.83 g cm⁻³. With a unit cell content of two ($Z_c = 1.94$) Nb₃Sb-groups the calculated density from the X-ray measurements is 9.11 g cm⁻³. Considering the small contamination of this sample the discrepancy of 3 % gives no reason to reject the stoichiometric formula Nb₃Sb. The crystal structure of Nb₃Sb. Attempts to obtain single crystals of the Nb₃Sb phase were unsuccessful and the present examination like the previous ones ⁴⁻⁶ was accordingly based on powder photograph data. According to Matthias et al. 4, Wood et al. 5, and Nevitt 6 Nb₃Sb should be listed among substances having β -W type structure. The β -W structure is described in space group Pm3n with: 6 Nb in (d) 1/4,1/2,0; 0,1/4,1/2; 1/2,0,1/4; 3/4,1/2,0; 0,3/4,1/2; 1/2,0,3/4 2 Sb in (a) 0,0,0; 1/2,1/2,1/2 Both Wood et al.⁵ and Nevitt ⁶ have compared observed and calculated intensities and obtained comparatively good agreement. However, for some reflections the two of them found considerable disagreement and therefore concluded there to be a possibility of Nb₂Sb having another structure. For this reason a new comparison of observed and calculated intensities of the reflections was carried out. The relative intensities of the reflections on the Debye-Scherrer photographs were determined from photometer recordings of the films. Multiple-film photographs were used to avoid errors in the estimation of the highest and weakest intensities on the photographs. Corrections for the resolution of Ka_1 - a_2 doublets were carried out according to the method of Rae and Barker.¹¹ | $h^2 + k^2 + l^2$ | $I_{ m obs}$ | $I_{ m calc}$ | $h^2+k^2+l^2$ | $I_{ m obs}$ | $I_{ m calc}$ | |-------------------|--------------|---------------|---------------|--------------|---------------| | 2 | 1.6 | 1.8 | 24 | 0.0 | 0.1 | | 4 | 25.8 | 27.1 | 26 | 0.5 | 0.4 | | 4
5 | 54.1 | 60.1 | 29 | 15.0 | 13.0 | | 6 | 51.5 | 59.2 | 30 | 13.0 | 11.7 | | 8 | 0.3 | 0.3 | 32 | 11.4 | 10.2 | | 10 | 0.4 | 0.4 | 34 | 0.5 | 0.2 | | 12 | 4.4 | 3.5 | 36 | 9.1 | 8.1 | | 13 | 13.9 | 12.6 | 37 | 5.5 | 5.0 | | 14 | 30.6 | 29.6 | 38 | 20.8 | 21.3 | | 16 | 12.5 | 10.2 | 40 | 0.4 | 0.2 | | 18 | 0.4 | 0.3 | 42 | 0.7 | 0.4 | | 20 | 9.0 | 8.4 | 44 | 7.2 | 6.2 | | 21 | 12.7 | 11.8 | 45 | 37.2 | 34.9 | | 22 | 8.6 | 7.4 | 46 | 48.6 | 50.7 | Table 6. Powder photograph data of Nb₃Sb taken with CuK-radiation, α_2 and β lines omitted. The calculated values taken from Wood et al.⁵ are listed in Table 6 together with the present observed values. As can be seen from Table 6 the agreement between the two sets of values is very good, $R = \Sigma |I_{\rm calc} - I_{\rm obs}|/\Sigma I_{\rm obs} = 0.095$, and leaves no doubt about the correctness of the proposed structure. Even better agreement could have been obtained by applying absorption correction as seen from the systematic variation in $I_{\rm calc}-I_{\rm obs}$, cf. Table 6, from positive to negative with increasing Θ . Thus the absorption and temperature factors do not cancel in this case. An absorption correction should normally have been attempted, because the dimensions of the sample were not particularly small and its absorption large ($\mu_{\rm Nb,Sb}=1720~{\rm cm}^{-1}$). Nevertheless this correction was not carried out as even the uncorrected set of $I_{\rm obs}$ removed the doubts of Wood $et~al.^5$ and Nevitt.⁶ One of the reasons for the better results obtained in the present study is probably the increased purity of the sample. The interatomic distances are only slightly altered by the new data. Each niobium atom is coordinated to two niobium atoms in linear chains at a distance of 2.632 Å, to eight more niobium atoms at a distance of 3.224 Å, and to four antimony atoms in a tetrahedral arrangement (2.943 Å). Each antimony atom is coordinated to twelve niobium atoms at the corners of an icosahedron. The shortest Nb-Nb distance is definitely shorter than in metallic niobium (2.858 Å according to Neuberger ¹² and Edwards et al.¹³). For a detailed discussion of the interatomic distances in Nb₃Sb and other phases with β -W type structure reference is made to Wood et al.⁵, Nevitt, ⁶ Geller, ¹⁴ and Pauling. ¹⁵ The Nb_5Sb_4 phase. Guinier photographs of different samples in the concentration range ~ 30 to ~ 60 atomic % Sb contained reflections from a phase of tetragonal symmetry cf. Table 7. The additional reflections from other phases are weak on photographs of samples with composition near 44 atomic % Sb. Table 7. Guinier photograph data of Nb_bSb_4 taken with strictly monochromatized $CuK\alpha_1$ -radiation. | $I_{ m obs}$ | sin²Θ : | × 10 ⁵ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\sin^2\!\Theta imes 10^5$ | | hkl | |---------------|------------------|-------------------|--|------|-----------------------------|--------|---------------| | -009 | | calc | 70.00 | 1008 | obs | calc | | | m | 1 116 | 1 115 | 110 | m | 27 561 | 27 541 | 541 | | \mathbf{w} | 2 234 | 2 230 | 200 | m | 27 882 | 27 870 | 550 | | m | 4 459 | 4 459 | 220 | m | 28 790 | 28 785 | 332 | | w | 5 245 | 5 245 | 101 | vw | 28 980 | 28 985 | 640 | | w | 5 567 | 5 574 | 310 | w | 33 240 | 33 244 | 512 | | \mathbf{st} | 7 464 | 7 475 | 211 | st | 34 234 | 34 230 | 721 | | vst | 9 701 | 9 705 | 301 | w | 37 697 | 37 704 | 532 | | \mathbf{st} | 10 031 | 10 033 | 330 | m | 38 676 | 38 688 | 651 | | st
st | 11 148
14 167 | 11 148
14 164 | 420
411 | vw | 40 901 | 40 916 | {741
 811 | | w | 14 491 | 14 492 | 510 | w | 41 047 | 41 048 | 622 | | m | 18 629 | 18 623 | 501 | w | 41 236 | 41 248 | 750 | | m | 18 755 | 18 752 | 002 | w | 44 978 | 44 979 | 213 | | \mathbf{m} | 18 946 | 18 952 | 530 | vw | 45 347 | 45 372 | 831 | | w | 20 848 | 20 853 | 521 | m | 46 625 | 46 625 | 552 | | \mathbf{w} | 22 287 | 22 296 | 620 | m | 47 213 | 47 209 | 303 | | vw | 23 201 | 23 211 | 222 | vw | 47 745 | 47 737 | 642 | Thermal decomposition of NbSb₂, which was first noticed at $\sim 830^{\circ}$ C, gave a residuum of composition Nb_{1,21}Sb, *i.e.* approximately Nb₅Sb₄. (Further decomposition of Nb₅Sb₄ to Nb₃Sb takes place above $\sim 950^{\circ}$ C.) The Guinier photograph of this sample showed the presence of faint amounts of NbSb₂, NbO, and Nb₅Si₃. The lattice constants of the Nb₅Sb₄ phase in the latter sample and those in the samples Nb₂Sb and NbSb_{1.5} are listed in Table 8. The slight variations in unit cell dimensions indicate that the homogeneity range of the phase is rather narrow. The hkl reflections are absent when h+k+l=2n+1 in the Guinier photographs. Characteristic space groups are accordingly I4, $I\overline{4}$, I4/m, I422, I4mm, I4m2, $I\overline{4}2m$, and I4/mmm. Table 8. Lattice constants of the Nb₅Sb₄ phase. | Sample | a (Å) | c (Å) | c/a | |--|--------|--------|--------| | $egin{array}{l} \mathrm{Nb_5Sb_4^a} \\ \mathrm{Nb_2Sb^b} \\ \mathrm{NbSb_{1.5}}^b \end{array}$ | 10.314 | 3.5566 | 0.3448 | | | 10.317 | 3.5574 | 0.3448 | | | 10.318 | 3.5569 | 0.3447 | $[^]a$ Thermal decomposition of $\rm NbSb_2$ at 850°C. b Quenched from 800°C. The observed density, $8.17~{\rm g~cm^{-3}}$, indicates that the unit cell contains two ($Z_{\rm c}=1.94$) Nb₅Sb₄-groups. The calculated density from the X-ray data is $8.35~{\rm g~cm^{-3}}$. Considering the experimental conditions the agreement between the two values is satisfactory. The crystal structure of Nb_5Sb_4 . Attempts to obtain single crystals were in vain and the structure determination was accordingly based on powder data. A tetragonal structure of a phase $\mathrm{Ti}_5\mathrm{Te}_4$ has been described by Grønvold et al. ¹⁶ As there were obvious relationships between the intensities of the reflections from $\mathrm{Nb}_5\mathrm{Sb}_4$ and $\mathrm{Ti}_5\mathrm{Te}_4$ the possibility of the compounds being isostructural was investigated. In terms of the space group I4/m the atomic arrangement in $\mathrm{Ti}_5\mathrm{Te}_4$ is as follows: ``` 2 Ti I in (a) 0.0,0; \frac{1}{2},\frac{1}{2},\frac{1}{2} 8 Ti II in (h) \pm (x,y,0; \frac{1}{2}+x,\frac{1}{2}+y,\frac{1}{2}; \bar{y},x,0; \frac{1}{2}-y,\frac{1}{2}+x,\frac{1}{2}) with x_1=0.31 and y_1=0.38 8 Te in (h) with x_2=0.06 and y_2=0.28 ``` (The values of the variable parameters have been rounded off.) These parameters were used in the calculation of intensities on the Guinier photographs. A reasonable agreement between observed and calculated intensities was obtained indicating that the proposed structure is correct. Further refinement of the parameters was not attempted. The shortest interatomic distances calculated on the basis of the above parameters are listed in Table 9. The coordination in the $\mathrm{Ti}_5\mathrm{Te}_4$ type structure of $\mathrm{Nb}_5\mathrm{Sb}_4$ is seen from left the part of Fig. 4. The niobium coordination around the Nb I atoms (which is the same as in niobium metal) corresponds to the eight short Nb I-Nb II distances in Table 9. This length is only about 3 % larger than that of pure niobium. (The shortest interatomic niobium-niobium distances in $\mathrm{Nb}_3\mathrm{Sb}$ are about 8 % shorter than in pure niobium.) For a detailed description of the $\mathrm{Ti}_5\mathrm{Te}_4$ structure reference is made to Grønvold et al.¹⁶ Table 9. Interatomic distances in Nb₅Sb₄ (Å). ``` Sb - 1 Nb I : 2.95 Nb I -2 Nb I : 3.557 -2 Nb II: 2.74 −8 Nb II: 2.92 -4 Sb -2 Nb II: 2.76 : 2.95 -1 Nb II: 2.79 -2 Sb : 3.55 Nb II -2 Nb I: 2.92 : 3.557 -4 Sb : 3.77 -2 Sb : 4.27 -2 Nb II: 3.28 -2 Nb II: 3.45 -2 Sb -2 Nb II: 3.557 : 4.35 -2 Sb : 2.74 -2 Sb : 2.76 : 2.79 -1 Sb ``` Six phases are known with the Ti_5Te_4 structure, i.e. Ti_5Te_4 , $^{16}V_5S_4$, $^{17}V_5Se_4$, $^{18}Nb_5Se_4$, $^{19}Nb_5Te_4$, 19 and Nb_5Sb_4 , while $V_5Te_4^{\ 20}$ has a monoclinic structure of similar dimensions. The existence of a niobium antimonide with the Ti_5Te_4 structure indicates that the occurrence of this structure is not governed by normal valence rules. This result is probably consistent with the close relationship between the Ti₅Te₄ type atomic arrangement and the metallic state. Further comments will have to await more experimental data. Fig. 4. A comparison of the NbAs and $\mathrm{Nb_5Sb_4}$ structures. Both structures are projected along [001]. Filled circles represent metal atoms and open circles represent metalloid atoms. The numbers indicate fractions of the c-axis. The relationship between the structures of NbAs and Nb $_5$ Sb $_4$ is shown in Fig. 4. The dashed squares in the diagram to the left resemble the NbAs unit shown to the right. The notable difference is the stacking of the atomic layers perpendicular to [001]. The NbSb₂ phase. The existence of the NbSb₂ phase was clearly demonstrated in Fig. 2. NbSb₂ was easily obtained by heating mixtures of the elements, without the interfering, simultaneous formation of NbO and Nb₅Si₃. During the heat treatment the samples were subject to sintering. Needle shaped, single crystals up to 2 mm long were obtained of this phase. Guinier photographs of the NbSb₂ phase were indexed as monoclinic, cf. Table 10. The lattice constants of NbSb₂ are listed in Table 11 together with the lattice constants of the NbSb₂ phase for the samples NbSb and NbSb₃. The homogeneity range of the NbSb₂ is supposedly narrow. The observed densities of a quenched and a slowly cooled sample are respectively $8.22~{\rm g~cm^{-3}}$ and $8.35~{\rm g~cm^{-3}}$. Assuming an unit cell content of four ($Z_{\rm c}=3.98~{\rm and}~4.04$) NbSb₂-groups the corresponding calculated density from the X-ray measurements is $8.26~{\rm g~cm^{-3}}$. The systematic extinctions were of the type: hkl absent when h + k = 2n + 1h0l absent when (l = 2n + 1)0k0 absent when (k = 2n + 1) Characteristic space groups are accordingly C2, Cm, and C2/m. Table 10. Guinier photograph data of NbSb₂ taken with strictly monochromatized $\text{Cu}K\alpha_1$ -radiation. | $I_{ m obs}$ | $ ho ext{bs} ho ext{calc} ho ext{bs} ho ext{calc}$ | | | $I_{ m obs}$ | $\sin^2\Theta imes 10^5$ | | hkl | |------------------------------|---|-------------------|--|--------------|---------------------------|------------------|--| | | | | | obs | calc | | | | m | 2 295 | 2 302 | 201 | w | 23 072 | 23 076 | 514 | | w | 3 012 | 3 022 | 200 | w | 23 120 | 23 124 | $60\overline{4}$ | | m | 4 555 | 4 563 | 002 | w | 23 345 | 23 388 | 510 | | w | 5 244 | 5 254 | 110 | m | 25 706 | 25 698 | $22\overline{3}$ | | w | 5 460 | 5 464 | 111 | \mathbf{w} | 25 855 | 25 860 | $31\overline{5}$ | | \mathbf{vst} | 7 311 | 7 325 | $ \begin{array}{c} 111 \\ 20\overline{3} \\ 11\overline{2} \end{array} $ | st | 27 203 | [27 201 | $42\overline{2}$ | | m | 7 702 | 7 706 | $20\overline{3}$ | sı | 1 | 27 202 | $\begin{array}{c} 600 \\ 42\overline{1} \end{array}$ | | st | 7 957 | 7 956 | $11\overline{2}$ | vw | 27 518 | 27 501 | $42\overline{1}$ | | st | 9 216 | 9 209 | 402 | w | 27 843 | 27 807 | $60\overline{5}$ | | w | 9 508 | 9 509 | 4 01 | st | 28 262 | 28 258 | 023 | | \mathbf{vst} | 9 653 | 9 648 | 311 | vw | 28 522 | 28 518 | 005 | | vst | 10 261 | {10 266
10 278 | $\begin{array}{c} 003 \\ 31\overline{2} \end{array}$ | m | 29 206 | 29 181
29 183 | $\frac{511}{423}$ | | m | 11 192 | 11 191 | $40\overline{3}$ | m | 30 131 | 30 084 | 420 | | | 11 900 | (11 299 | 310 | vw | 31 866 | 31 822 | $22\overline{4}$ | | \mathbf{st} | 11 302 | 11 306 | 202 | st | 32 318 | 32 259 | $71\overline{3}$ | | $\operatorname{\mathbf{st}}$ | 11 675 | 11 678 | 112 | \mathbf{w} | 33 511 | 33 521 | 403 | | \mathbf{st} | 12 090 | 12 092 | 400 | w | 33 940 | 33 926 | 601 | | \mathbf{w} | 12 723 | 12 730 | 113 | \mathbf{w} | 34 944 | 34 943 | 421 | | \mathbf{vst} | 13 200 | 13 191 | 313 | w | 35 632 | 35 617 | $31\overline{6}$ | | \mathbf{w} | 13 825 | 13 830 | $20\overline{4}$ | m | 36 567 | 36 542 | $51\overline{6}$ | | $\mathbf{v}\mathbf{w}$ | 16 944 | 16 951 | 401 | m | 36 861 | 36 864 | 223 | | m | 17 984 | 17 992 | 020 | vw | 37 223 | 37 254 | 512 | | $\mathbf{v}\mathbf{w}$ | 18 361 | 18 385 | $31\overline{4}$ | w | 38 052 | 38 034 | $80\overline{2}$ | | w | 18 847 | 18 872 | 203 | m | 38 421 | 38 425 | 115 | | vw | 19 662 | 19 698 | $51\overline{3}$ | w | 39 707 | 39 660 | $80\overline{5}$ | | \mathbf{m} | 19 784 | 19 784 | $11\overline{4}$ | w | 40 006 | 39 991 | $42\overline{5}$ | | $\mathbf{v}\mathbf{w}$ | 19 854 | 19 860 | $51\overline{\underline{1}}$ | w | 40 237 | 40 228 | $22\overline{5}$ | | $\mathbf{v}\mathbf{w}$ | 20 266 | $20\ 295$ | $22\overline{1}$ | st | 40 725 | (40 715 | 314 | | \mathbf{st} | 21 421 | 21 444 | $31\underline{2}$ | 1 50 | | 40 734 | $11\overline{6}$ | | w | 21 997 | 21 999 | $40\overline{5}$ | w | 41 146 | 41 116 | $62\overline{4}$ | | \mathbf{w} | 22 225 | 22 236 | $20\overline{5}$ | m | 41 533 | 41 513 | 423 | | vw | 22 538 | $22\ 550$ | 022 | | 1 | 41 523 | 710 | | w | 22 735 | 22 761 | $60\overline{1}$ | w | 42 096 | 42 088 | 422 | Table 11. Lattice constants of the $NbSb_2$ phase. | Sample | a (Å) | b (Å) | c (Å) | β (°) | |-------------------|--------|--------|-------|--------| | NbSb | 10.239 | 3.6321 | 8.333 | 120.07 | | NbSb ₂ | 10.239 | 3.6319 | 8.333 | 120.07 | | NbSb ₃ | 10.237 | 3.6326 | 8.332 | 120.06 | Acta Chem. Scand. 18 (1964) No. 5 # C. Magnetic properties The magnetic susceptibilities of NbAs, NbAs₂, Nb₃Sb, Nb₅Sb₄, and NbSb₂ have been measured at temperatures between 90 and 725°K. The results, cf. Fig. 5. The magnetic susceptibilities of NbAs, NbAs₂, Nb₃Sb, Nb₅Sb₄, and NbSb₂ as a function of temperature. Fig. 5, show either diamagnetic or weak almost temperature-independent paramagnetic susceptibilities. The expected diamagnetism resulting from the atomic cores in the three diamagnetic substances NbAs, NbAs₂, and NbSb₂ are of the same size as observed. The core contributions are -0.44×10^{-6} , -0.57×10^{-6} , and -0.59×10^{-6} e.m.u. per gram NbAs, NbAs₂, and NbSb₂, respectively. (These values were calculated from the diamagnetic corrections -9×10^{-6} e.m.u. per mole Nb⁵⁺ according to Klemm ²¹ and -64.6×10^{-6} e.m. u. per mole As³⁻ and -94.4×10^{-6} e.m.u. per mole Sb³⁻ according to Angus.²²) By subtracting these values from the measured susceptibilities the total susceptibilities of localized, non-bonding electrons, valence electrons and conduction electrons are obtained. The measurements show that no unpaired d-electrons are present on the niobium atoms and suggest a covalent type of chemical bonding in NbAs, NbAs₂ and NbSb₂. Further details concerning the chemical bonding will be reported in a forthcoming paper. The core contributions are -0.30×10^{-6} and -0.44×10^{-6} e.m.u. per gram Nb₃Sb and Nb₅Sb₄, respectively. The differences in magnetic properties of these substances compared with the previous discussed NbAs, NbAs₂, and NbSb₂ reflects the difference in chemical bonding. Nb₃Sb and Nb₅Sb₄ are expected to have a metallic type of bonding and the observed paramagnetism should accordingly be associated with a paramagnetic contribution resulting from the spin of the electrons in the conduction band. Acknowledgement. The authors are greatly indebted to Professor Haakon Haraldsen for his kind interest in this study. #### REFERENCES - Heinerth, E. and Biltz, W. Z. anorg. allgem. Chem. 198 (1931) 175. Boller, H. and Parthé, E. Acta Cryst. 16 (1963) 1095. Furuseth, S. and Kjekshus, A. Acta Cryst. In press. - 4. Matthias, B. T., Wood, E. A., Corenzwit, E. and Bala, V. B. J. Phys. Chem. Solids 1 (1956) 188. - 5. Wood, E. A., Compton, V. B., Matthias, B. T. and Corenzwit, E. Acta Cryst. 11 (1958) - 6 Nevitt, M. V. Trans. Met. Soc. AIME 212 (1958) 350. - 7. Selte, K. and Kjekshus, A. Acta Chem. Scand. 18 (1964) 697. - Hambling, P. G. Acta Cryst. 6 (1953) 98. Schäfer, H. and Dohmann, K.-D. Z. anorg. allgem. Chem. 299 (1959) 197. - Kjekshus, A. Unpublished results. Rae, A. I. M. and Barker, W. W. Acta Cryst. 14 (1961) 1208. Neuberger, M. C. Z. Krist. A 93 (1936) 158. - 13. Edwards, J. W., Speiser, R. and Johnston, H. L. J. Appl. Phys. 22 (1951) 424. - 14. Geller, S. Acta Cryst. 9 (1956) 885; Ibid. 10 (1957) 380. 15. Pauling. L. Acta Cryst. 10 (1957) 374. - Pauling. L. Acta Cryst. 10 (1957) 374. Grønvold, F., Kjekshus, A. and Raaum, F. Acta Cryst. 14 (1961) 930. Grønvold, F., Haraldsen, H., Pedersen, B. and Tufte, T. To be published. Røst, E. and Gjertsen, L. Z. anorg. allgem. Chem. 328 (1964) 299. Selte, K. and Kjekshus, A. Acta Chem. Scand. 17 (1963) 2560. Grønvold, F., Hagberg, O. and Haraldsen, H. Acta Chem. Scand. 12 (1958) 971. Klemm, W. Z. anorg. allgem. Chem. 246 (1941) 347. Angus, W. R. Proc. Roy. Soc. (London) A 136 (1932) 573. Saini, G. S., Calvert, L. D. and Taylor, J. B. Can. J. Chem. 42 (1964) 630. Received February 8, 1964.