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Matrix equations are given for use in the general minimizing
computer program LETAGROP VRID. Like the earlier program
LETAGROP,%2 it finds the position of the minimum for a function
U(k,...ky) — which may be an error-square sum — by calculating
U for $(N+1) (N-+2) systematically chosen sets k and assuming
U(k,...ky) to be a second-degree surface. In cases with ‘“skew pits”
(covariation of the k;), the coordinates are transformed by means
of a triangular ‘‘twist matrix’’ S.

In many problems, some of the constants (e.g. equilibrium con-
stants) cannot be negative. If any such constants are found to be
negative at the minimum, they are set equal to zero, and the minimum
for U is calculated for the ‘“reduced pit’’, which means the section
in (U,k) space where the ‘‘minus’ constants have been eliminated
(MIKO). The necessary matrix equations for this operation are given.

These methods, in conjunction with more rapid computers, seem
to open a path for a more systematic trial of all possible combinations
than has been possible to date. To avoid self-deception in a mecha-
nized data treatment it seems advisable to treat all conceivable
systematic errors as unknown constants to be determined.

Part I of this series! deals with the principles of LETAGROP, a series of
computer programs designed for finding the values for a set of unknown
constants k,k,...ky that will minimize an error-square sum defined by (w =
weight)

U= 2WYexp — Yearc)? (1)

Here, y.,, is a measured quantity, and y.,. is obtained from a functional
relationship

Y = f(ky, Ea...koy; 01, @5...) (2)

where a,, etc., are quantities assumed to be known. With a computer it is
easy enough to calculate U for various sets, k(k,,ky.ks...ky), even if the rela-
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tionship between y and the k in (2) is not linear (as required by the standard
“least-squares method’’) and not even explicit. Parts I' and II? indicate a
number of applications to chemical problems.

Whatever the original problem, we have reduced it to finding the minimum
for a function

U(K) = U(k,...ky) (3)

The clue to the solution is that around the minimum, U approximates
a second-degree surface (a paraboloid) in (V- 1)-dimensional space. We start
with a “central” set k. (estimated or guessed), and calculate U for k. and
for sets where one or two elements in k. have been changed by given steps h;.
From the U values for 3(N+1) (N +2) systematically chosen points, we may
calculate the coefficients of the equation for a second-degree surface through
these points, and hence the position k,, of the minimum point of that surface.
For brevity, the procedure described until now will be referred to as a “shot’’.

The k, obtained by the first shot may be used as the central value for the
next shot, ete.

The original program LETAGROP has been applied to a considerable
number of chemical systems and in general has performed well, as seen for
instance in Refs. 48 (A recent paper by Tobias and Yasuda ® probably also
refers to an early edition of LETAGROP).

Some difficulties were, however, met with in cases which may be described
as “skew pits”’, or strong covariation of the k;. In Fig. 1 as in most other figures
we shall restrict ourselves for simplicity to a case with two constants k, and
ky,. The reader’s imagination may help him to extend the idea to (N4-1)-
dimensional space, N >2.

Suppose that the region of the surface (3) close to the minimum, the ‘“pit”,
has its main axes at angles to the coordinate axes, k;, and moreover is narrow
and steep in some directions, so that it looks like a cleft (Fig. 1a). In the first

P K Fig. 1. a) Schematic map of surface U(k,,
2 a 2 b k,), giving error square sum U as a func-
tion of constants k, and k,. The pit is skew
and comparatively narrow. b) Same type
of map, pit for clarity drawn somewhat
broader. P, is a first guess. The crosses
around P, indicate the sets for which U is
calculated in first ‘“shot’’; like in the ori-
ginal LETAGROP the variation is made
parallel to axes. The calculated minimum
1s at P,. In the second ¢‘shot’’, the twist
matrix is available and variation is made
k k/ along twisted axes. The next calculated
minimum is indicated at P;.

LETAGROP, k was varied by steps parallel to the coordinate axes. When
the steps were chosen too large, and the pit was steep and skew, the points
fell high up on the walls of the “cleft”’, and terms of higher degree than the
second became important. When we used small steps, the rounding errors
in the computer (which after all has a limited precision) caused rounding errors
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in the calculation of k. In either case the computer took aim badly, as com-
pared with well-behaving systems, where in general two or three shots were
enough to give a satisfactory minimum.

It was not difficult to program the computer so that it always used, for
the next calculation, the point with the lowest U value it had found thus far;
80, the computer was always working toward the minimum. On the other
hand, it was thought (and later confirmed by experience) that we could greatly
increase the speed and accuracy of aiming if we varied k along the main axes
of the pit, instead of parallel to the coordinate axes. (Fig. 1 b). The programs
with this device were called LETAGROP VRID, (from Swedish vrida = twist,
turn); examples of successful application are Refs.10-13

A further improvement was the procedure MIKO for eliminating ‘“‘minus”
complexes, which will be described in the following.

The equations needed for these operations are very conveniently derived
and expressed by means of matrices. They are given here since some chemist
may want to apply the principles of LETAGROP VRID and MIKO for
special purposes, and might be helped by having the equations handy. It does
not seem impossible that a similar treatment has already been applied to some
other problem, although I am not aware of it.

NOTATION

A square matrix (in general N X XN) is denoted by a bold-face capital such
as S, H, etc. The square matrices we shall consider will mostly be symmetrical
(or even diagonal) or triangular (with zeros in lower left part). A vector will
be denoted by a bold-face lower case symbol such as k. If it is provided with
a perpendicular arrow, or with no arrow, it is a column matrix (dimension in
general N x 1), if it carries a horizontal arrow, it is a row matrix (in general
1 X N).

Symbols (numbers refer to equations): A symmetrical matrix in (26, 29
and 35); @, = known quantity in (2); b = k, in (33) etc; b, = vector with one
nonzero element in (22); C = symmetrical matrix in (21); ¢ = k. = central
set of ‘“‘constants’” (4); H = diagonal step matrix, elements = A&, (b); A; =
step in variation of k; (5); ¢, j = integer indices; k = set of unknown ‘“‘constants’
k; (3, 4); k., = central set k (4); k, = set k at calculated minimum of second-
degree surface U(k) (13); M = matrix in (36, 40); N = number of k; to be varied;
p = vector of linear coefficients, p;, in U(v), (7, 9); p’ = p in reduced pit (38,
39); R = symmetrical matrix with second-degree coefficients r,; in- U(v),
(7,10,11,25); R’ = R in reduced pit (38,39); R, = submatrix of R (19a); r,,, =
part of column in R (19a); § = triangular twist matrix (6); s;; = element
in §; 8’ = corrected twist matrix (17,18);T = transposed matrix; U = error
square sum, or other function of k to be minimized (1,3); U, = value for
U with central set k, (7); U, = value for U at calculated minimum (11,12b);
U'. = U, in reduced pit (38,39); U,, U_;, U,; = value for U when all elements
in v are = 0 except for v; =1 (U,), or v; = —1 (U_;), or v; = v; = 1 (U,)) (8);
Vv = variation vector (4); v = v corrected with 8§’ (15,17); v, = value for v at
calculated minimum (12a); w = variation vector in reduced pit (36); w =
weight (1); W = triangular correcting matrix (14,19a); w; = element in W;
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W,, = part of column in W (19a); X = vector in (21) and (31); y = vector in
(31b); ¥ = Yeqe = quantity defined by (2); Yexp = measured quantity;
¢ = standard deviation.

The superscripts,™ or v refer to matrix inversion, the subscripts ; and _
are explained in the text before eqn. (31).

VARIATION AND SHOT

In each shot the preceding systematic variation of k around the central
value K, (or shorter, ¢) is conveniently described by the equation

y {
k=c+SHv (4)

Here, k and ¢ are column matrices (vectors) with N elements, |k,k,...ky]
and |c,C,...cy]. The step matrix, H, is diagonal (5) and its elements are the
steps assigned to each constant, since the elements in v are either 0 or 41
(see below). The twist matrix, S (6) defines the directions in which to vary
the vector k. S is triangular, and the diagonal terms are always chosen as 1.
In the very first shot, all other terms (even those to the upper right) are set
equal to zero, but the calculations then usually give nonzero values to the s;;,
which are improved by each shot, like the k.

h 0.0 185...8x
H— |00 (5); T ®)
00 ...hy 00 ..1

If U(k) is a second-degree function, then U(v) must also be so. If U, is
the value at the central point (k = ¢, v = 0) then we may express U(v) by
means of

-y >
U=U.,—2pv+ VRV (7)

The variation vector V |v,v,...vy| is, for simplicity, chosen so that each
element is either 0 or +1. In addition to U,, the value for the central point, we

calculate U values for v vectors where all elements are equal to zero except for
v = 10 U.—2p;, + 1
= —1;U0,=U.+2p +r; } (8)
v, =v=1,;U; =U.—2p, — 2p; +rys +1; + 2r;

We thus calculate U; and U_; for ¢ = 1 through N, and U for s = 1
through N and j = (¢ + 1) through N. For reasons of symmetry, U;, = U,
and r; = r;. (In the actual calculation, we may reverse the sign for some
coordinate to get closer to the minimum, but this does not change our equa-
tions).

i
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COMPUTERS AND GRAPHICAL METHODS III 1089

We may now calculate the terms in p and R:

p; = 0.25(U_; — U)) (9)
r,, = 0. 5(U + U-‘) - (10)

To find the vector V, correspondmg to the minimum U,, we may express
the equation U(v) as follows:

- > 4 I - 4 - | - 1
U= Uy+ (V—Vo) R(v — vo) = U, + VgRv, — 2v;RvV + VRv (11)
A comparison of eqns. (7) and (11) gives
>} - -
U.= Uy + VoRvy; p=VyR;
and hence

- - -

Vo=pRY U, = U, — pv, (12a; 12b)

When v, is known, the vector k, at the calculated minimum point follows
from (4)

¢ 4 Y ‘
= ¢ 4 SHy, (13)

IMPROVING THE TWIST MATRIX

We want to choose the twist matrix S so that R becomes a diagonal matrix
(r;, = 0 for 1 5 j). In general this is not the case after a shot so we have to
improve S by the aid of information contained in R. We have chosen to in-
troduce a correcting matrix W, and to make W triangular, with unit diagonal:

0 wz:a: Won

|, 2 O (14)
00 0 ..wy_q.y
000 .1 |

Let us write

J Jy » -

v=WV; v=v WT (15)

Now we wish to choose W so that all mixed second-degree terms disappear
if the variation is made with v’ instead of with v. This means that in

-> | - ¥
VRV = V'WIRWYV’ , (16)
the matrix WTRW should be strictly diagonal. The relationship with the new
twist matrix S’ is then, from (4) and (15):

k — ¢ = SHWv' = §'Hv’, or SHW = §'H (17)
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This gives
§' = SHWH! (18)

To find §' we must thus calculate W from R. The conditions for WTRW
to be diagonal are the following equations

Wi + rg =0

r1Wig + T19Weq + 713 =10

To1W13 + TogWeg + Tog = 0

Ty Wyq + T19Weq + T13Wae + 714 = 0

Ty Wiy + T9gWeq + TosWsy + 794 = 0
Ta1Wyy + T39Way + T33Wsy + 734 = 0 ete.

(19)

We let R,, be the m X m submatrix of R which contains rows no. 1 through

-
m and columns no. 1 through m, and r, be the vector |ry,, rom...7m_1.mls
W,, is defined analogously. Then (19) may be expressed as

Wiy = —T1afT1y

- - - -

W;R, + 1, = 0; w; = —rgR;? (19a)
- - -> -

W,R; 41, =0; w, = —r, Ry ete.

By inserting (19) one may verify that the product WTR becomes a tri-
angular matrix with zeros in the lower right half. On multiplication with W,
only the diagonal terms remain. Applying eqns. (19) we may thus find the
various columns of W, after which we can use (18) to calculate the new twist
matrix.

Eqns. (19a) and (18) are those actually applied in the programs now in
use, and were derived by us for the purpose. We have later been told that a
specialist might have calculated 8§’ by several alternative standard methods,
e.g. Crout’s or Choleski’s, which might result in some economy of computer
time. On the other hand the time required by the calculation of U is at any
rate much longer than that spent with the matrices, so there has been no strong
incentive to try any other approach.

THE STANDARD DEVIATIONS

If the equation of the supersurface U(K) is known, one obtains the square
of the standard deviation for y, o%(y), by dividing the value U, at the minimum
point by the number of degrees of freedom (part I,! eqn. 17); the latter is
equal to the difference between the number of experiments, and the number
of unknown constants to be determined. (The o(y) one obtains corresponds to
the spread in measurements of weight = 1. If one has chosen weights that
differ much from unity, the result may at first look surprising).

For defining the standard deviations, o(k), of the various constants, we
have introduced (part I,! eqn. 47) what we called the “D boundary’’, which
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is the curve or supercurve on which U = U, + ¢*(y). We defined the stan-
dard deviation for each k; as the maximum difference,

o(k;) = D; = max ((kp — ko)) ‘ (20)

between the value for k; at any point on the D boundary, and the value for k;
at the minimum. (Part I,' p. 168 and eqn. (51)) »

If y(K) is a linear function, this definition for o(k;) gives exactly the same
result as the traditional one. For non-linear cases, we know of no generally
recognized definition of the o(k;).

To be strict, in our calculations we often use points closer to the minimum
and assume that the second-degree approximation is valid out to U = U, + 62,
which is permissible as a rule. If, in some special case, terms of higher order
become important even at U — U, = ¢?, then it would seem preferable to use
the idealized D boundary calculated from the second-degree surface coinciding
with U(K) close to the minimum. At any rate, in such a case our first wish
would be to have better data rather than a better statistical treatment of
those available.

If the pit is skew, the maximum deviation ¢(k;) for a certain constant,
k; on the D boundary, may be considerably larger than %; ¢(v;), the shift
in k; from the minimum to the D boundary along the corresponding twisted
axis (Fig. 2). The chemist has a choice either to define a new set of constants

ky

otk,j=hotv,)
Fig. 2. Schematic comparison of two meas-
ures of standard deviation, o(k;) and
h,o(v;). Curve = D boundary, with mini-
mum in center. For the last k;, ky, the
two measures are identical. Because § is
triangular, kny is not changed by a shift K
in the other constants (see (6) and (4)). !

(for instance to replace some of the earlier ones by their products, or ratios)
80 as to get smaller covariation, or to use the somewhat pessimistic maximum
deviations o(k;). At any rate, in our variation routine we need the quantities,
h,o(v;), for adjusting our “steps” k,. So, we have found it desirable to calculate
both o(k;) and o(v;).

Let us shift the origin to the minimum point, and express (U—U,) as a
second-degree function of some vector X, which may be either (k—Kk,) or (v—v,):

-
U—U, = XCx = ¢2(y) (21)

C is a symmetrical N x N matrix. Differentiating (21), we get for a varia-
tion along the D boundary:

=
dxCx =0
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The condition for the coordinate x; to have a maximum or minimum is
that dz; = 0, independent of the other dx. The coefficients for the other dx
must then be zero, whereas that for dx; is a non-zero constant which we may
call b,. If now we let b; be a vector for which all members are zero except for
the ¢:th, which is b,, then the condition for z; to have an extreme value can
be written as:

L T N
Cx=b; x=0C1b; x=b,C? (22)

If we insert (22) into (21), the equation for the D boundary, we find

oy) = Xb; = mb;  a¥(y) = B = " by (29)

Eliminating b, we find for the extreme value (compare eqns. 20 and 21)
o(x;) = |extreme z;| = o(y) V(—:i‘,‘—v (24)

Under the square root sign we find a diagonal element in the inverse matrix
C-1. We may write the equation for the D boundary in two forms, using v
or k (v, and Kk, are as usual the vectors at the minimum):

- = | I

U—Uy = 0¥y) = (v — Vo)R(V—V,) (20)

> > b ¢

U—U, = o*(y) = (k — ko)A(k—kq) (26)

We may compare (21) and (25) and find that X corresponds to v—v, and
C to R. Our result (24) will then give

a(v;) = oly) Vriwv (27)

The expression to the right in (27) can be obtained immediately from
our data and can be used, in conjunction with the ealier SH, to adjust the steps
in the next variation.

From (26) we find similarly

o(k) = o(y) Ve (28)
Under the square root sign is a diagonal term in A-!, the inverse of the

square matrix in U(K) (eqn. (26)). From the transformation (4) between
k and v we find, comparing (25) and (26),

R = (SH)TASH (29)
By applying standard methods we derive from (29)
A1l =SH R (SH)T (30)

Using (30) we may thus calculate the diagonal terms in A~ which we need
for calculating o(k;) with (28).
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ELIMINATION OF “MINUS” CONSTANTS

When one searches the ““best’ values for a number of equilibrium constants,
one or more of these may turn out to be negative at the minimum for U.
For one thing, when the computer tries to solve equations containing one or
more negative equilibrium constants, the calculations may go awry so that
the computer stops or is caught in a loop. More important, however, negative
equilibrium constants cannot have a physical meaning.

It is easy enough to add to the program some safeguard that will make it
impossible for any of the ‘“non-negative’’ unknown constants to become nega-
tive during a variation, or in the final check on U. What we really want is,
however, the vector k that gives the lowest value for U and still has a physical
meaning, thus containing no negative equilibrium constants.

Fig. 3. Schematic. Two cases of ‘“minus b
constants’’. Curve joins points of same U, a k k
such as the D boundary. a) First shot gives 2 2
minimum M, with negative k,., M, is
minimum in “reduced pit’’ = section with M
ky, = 0, P = projection of M, on reduced

pit. M&AP Me
b) First shot gives minimum at M, with
negative k, and positive k,. In section M

M
K
with £, = 0, the minimum M, gives a
negative k, so that &, must also be elimin- k
ated and M, is the ‘best’” permissible
minimum.

Fig. 3a gives a schematic two-dimensional picture for U(k,, k,). M, is the
calculated minimum, with a surrounding pit contour, (e.g. the D boundary)
and k, is negative in M,. The “best” value for k, would correspond to M,,.
which gives a minimum in U in the “reduced pit”, that is the section with
k, = 0. This is not identical with the “projection’ point P obtained by changing
the negative value for k, at M, to zero. We shall now see, for an N-dimensional
case, how we may find the minimum after eliminating the “minus’ constants.

In the following discussion we shall write each vector, X, as a sum of two
vectors of the same length as X. In one of them, x " all those elements that
correspond to the ‘“minus’ constants in the ‘“shot” have been set equal to
zero. In the other vector, X the only non-zero members are those that corre-
spond to the “minus’ constants. For instance, if there were five constants
(N = 5), and k, and k, turned out to be negative in the shot, then the two
vectors would be: :

X, =r;0x32,0 and X =|02,0 0z (31)
Similarly we may divide any square (N X N) matrix A into four parts,
where the first subscript refers to the rows and the second to the columns:
X=X, +%x; A=A, +A_+A, +A_ (31a)

In the example given, a,, would be in A, and ay; in A,_. For the products
of two vectors, a vector and a square matrix, and two square matrices, we
would have, for instance:
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>y - —>¢v - -

_)
Xy =x,y, +xy; (XA), =x, A, +XxA_;
(AB),, = A_,B,, + A, B__ etec. (31b)

Using the results of a ‘“‘shot’’ we may express the equation for the second-
degree U surface as follows

- - J

y
U—Uy= (V— Vo) R(v — v,) (32)

We shall write for simplicity
Using (4) we find

o4 R
k—b = (SH) (V— vp) (34a)

ol + 4
vV—v,= (SH)!(k —b) ~ (34b)

Introducing (34b) into (32), we find, using (29):

Vo
U— U, = (k— b)A(k — b) (35)
A = ((SH)")* R(SH)? (35a)

Eqn. (35) is the fundamental relationship U(k) ; we shall remember that
v is an auxiliary set of coordinates, the directions and origin of which are shif-
ted during the calculation.

Now we shall consider only the ‘“reduced pit’’, and thus the section in
(U k) space in which all the “minus’ constants are exactly zero, so that kK is
equal to the ‘“plus” part K,. Moreover, we shall choose as the starting point
the projection b, on that section, of the calculated minimum b, using a new
variation vector and a new matrix M, with only “plus’’ components. Then we
have (compare eqn. 4)

+ 4 ¥

k=k,; b=b, +b; k=b, +M, W, (36)
hence

J J ¥ J -> > - -

K—b=M, w, —b; k—b=wM,, —b (37)
Introducing (37) into (35) we find

>4 >

U=U,.— 2p'W + wR'w (38)

where

- J -

-
U,=U,+bA b; p=>bA_ M, R =M, A_ M,
Acta Chem. Scand. 18 (1964) No. 5
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The matrix M can be chosen arbitrarily. We shall use what is perhaps the
simplest choice, namely the same transformation matrix SH as earlier, only
after eliminating the rows and the columns that correspond to ‘minus”
constants

M++ = (SH)++ (40)

In the program we have developed,® U’,, p’ and R’ are calculated in a
special block MIKO, after which the minimum and standard deviations of
the “reduced pit” are again calculated in the block GROP, since it seems prac-
tical to use the operations already available for a normal pit. However, one
could also have calculated the reduced minimum directly, from

k,=b, +bA_ A, (41)

(This follows from solving (38) for w,, like in (12a), and inserting (39). Be-
fore inverting A, in (41), one must reduce its size by eliminating all “‘minus”
rows and columns). '

After the “minus” constants have been made zero in this way it sometimes
happens that in the new minimum other constants get ’minus” values so
that they also have to be eliminated. An illustration is given in Fig. 3b, which
may represent a section from (N -+ 1)-dimensional space. The procedure in
MIKO will then be repeated until all remaining constants are positive or zero.

The position for the minimum in the section with k_ = 0, and the standard
variations for the constants k,_, will come out correctly from (38), provided
the approximation of a second-degree surface is valid. We have several times
compared the position for a minimum as calculated from (38), thus using U
values for points outside of the section with k = 0, with the values obtained
directly from U values for points in this section. The agreement has been sur-
prisingly good, and the differences have been too small to be of any practical
importance; this indicates that in “normal” cases the second-degree approxi-
mation is a useful one.

It should be noticed that the axis directions of the vector (SH), ,w_, which
can be considered as a projection of (SH)v_, in general do not correspond to the
main axes of the reduced pit. As a matter of fact, the transformation (SH),
may make the reduced pit more skew than before, and so the quantity ka(w);
comes out larger than o(k;) as often as not. If one does not want to be confused
by this result, or to have to explain it to everyone who sees it, one can just
omit having it printed; it is of no use in the calculation.

Details of the new program are given in part IV.? Applications of the new
LETAGROP, with VRID and MIKO, to various chemical problems will be
shown in a number of future publications from this department.

THE SPECIES SELECTOR

In equilibrium analysis — and especially in studies of polynuclear complexes
— the first question to ask is, which complexes X; exist in appreciable amounts
in the system. We may imagine that we have extensive data of the most
common type, Z(log a, B), to be explained by a set of complexes A,B,, each
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with a triplet (p,q,8,) (see for instance, part I,! p. 160); the following dis-
cussion will be valid, however, also for other types of data.

Suppose that we have tried to explain our data by a certain set of complexes
X,; X,.. Xy, each with its equilibrium formation constant k;, and that we
have found a minimum for U at M, where all the equilibrium constants, k, —ky
are positive. In Fig. 4, the space (k,...ky) is represented by the vertical line.
Now we add a new complex X’, with the equilibrium constant &', and let the
computer calculate the minimum point M’ and the standard deviations for
the combination (k...ky, k).

Fig. 4 indicates schematically a few possible positions of M’ and the sur-

a b

‘ kin kin 'y d P

"'Q <70 R AR
-

K K k

Fig. 4. Possible effects of adding new kn
constant £’ in explanation. M, = minimum M
found with original set (kyks... kn), !
symbolized by vertical axis. M’ = new
calculated minimum. In 4a and 4e¢, %’
and M’ are accepted. In 4b and 4d, %’ QN
is rejected (k' set = 0) and M, retained. ° k'
In 4e, M’ makes some earlier constant M
negative so that the latter is set = 0, &k’

accepted and M, taken as “‘best’’ minimum.

rounding elliptical D boundary. In Fig. 4a, a ‘““better’” minimum is found at M’,
with a positive k', so there are good reasons not to forget X’ in succeeding
calculations. In Fig. 4b, a “better”’ minimum is found a M’, to be sure, but it
requires a negative k', so that X' will be “thrown out” by MIKO.

These two cases are clear-cut, but there are borderline cases such as 4c
and 4d, where o(k’) is less than |k’| at M'. As the program is now written,
X’ will be thrown out in case 4d but retained in case 4c. The distinction is
really not very sharp. Adding the complex X' to the “explanation” would
give a slight improvement in U in case 4c, and no improvement in case 4d.
However, from such data one would probably be content, in either case, to
state a maximum value for &’ (for instance k' + 3o(k’), see discussion by Duns-
more, Hietanen and Sillén,! p. 2648), and to state that the data are insuffi-
cient either to prove or to disprove the existence of X'. A statistician might
feel inclined to give a confidence level; we fould feel inclined to look into
the systematic errors, and to search for better data, or evidence of other
kinds.

It often happens that the addition of a new complex throws out an earlier
one, as indicated in Fig. 4e. In the calculated minimum M’, the newcomer
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has a positive &’ whereas some old complex gets a negative k and hence is set
equal to 0. The new “best” set is represented by M, in Fig. 4e.

Now suppose that our first treatment of the data — with the MESAK
method,* or other graphical methods — has provided us with, say 8 or 10
“possible’” formulas for the complexes present. A promising strategy is the
following. We start with, say, two or three that we suspect to be the main
species and let LETAGROP calculate the ‘“‘best’ values for their equilibrium
constants. Then the other ‘“possible”” complexes are added, one after another,
and the “best’”’ constants calculated for each combination. Some of the new-
comers will be thrown out immediately, some will stay, and some “old”
complexes may be thrown out in the process.

After trying all ““possible” complexes we have a set of complexes and equi-
librium constants which is in general different from the starting set. Then
there is a chance that some of those complexes that were thrown out at an
early stage would have been retained if combined with some complex that
has been ‘‘caught’ later on in the process. So, the whole set of rejected com-
plexes should be passed through once more, and this should be repeated until
no additional complex is “caught’ during a cycle. The policy to be followed
in borderline cases such as 4c and 4d will be a matter of judgment and
experience.

With the development of faster and faster computers, it may become prac-
tical one day to pass through the computer all conceivable formulas from
AB,, A,B; and A B,, to, say A, B,,, rather than try to limit the search to
the most probable formulas. However, it seems that one must always start
with a small group of complexes — one, two or three — that give something
that looks like a pit in U, even if it need not be very deep. If the starting
complexes, and constants, give calculated values for y (which may for instance
be Z) that have no resemblance to the experimental ones, then U will be of
the order of ny® and we are on a high plateau in U(k) where the second-degree
approximation is of no help. To find the starting pit, preliminary graphical
methods at present seem the best way.

SYSTEMATIC ERRORS

One of the greatest advantages of well-designed graphical methods as com-
pared to purely numerical methods of treating data is that systematic errors
can be made to stand out very clearly (Ref.2%, p. 191, 196). If experimental data
are fed thoughtlessly into a computer, there is a risk that systematic errors
may be overlooked, and erroneous conclusions may be drawn. This risk exists
even if the first preliminary set of species and equilibrium constants are as
usual derived by graphical methods, and the final check of experimental against
calculated values is also made in a graph. The risk is especially great with
those (e.g. young workers) who have not had extensive experience with gra-
phical methods at their best.

To minimize this risk it seems necessary, as a matter of routine, to freat
also the systematic errors as unknown constants to be determined (Part I, p. 171).
If the systematic errors are ‘“turned loose” in the same way as other constants,
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some minor complex may be thrown out. This would mean that the data can
be explained as well or better if that complex is left out and a certain syste-
matic error assumed. If the error seems reasonable, there is no reason to main-
tain stubbornly the existence of that complex. If the error is larger than ex-
pected, one must try to find out whether the error or the complex is the more
likely explanation.

Systematic errors, such as unavoidable small analytical errors, and errors
in the emf constants E;, are usually different in different groups of experi-
mental data. This is one reason for making a distinction between common
constants, valid for all data (such as equilibrium constants) and group con-
stants (such as E;), and to give the program a choice to vary either. This
device was first applied to Sylvia Gobom’s emf data on acetate-Pb2* complexes.1?
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