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Model Treatment of Diffusion Processes

HANS VINK

From the Institute of Physical Chemistry, University of Uppsala, Uppsala, Sweden

A model treatment of diffusion processes is presented. It consists
of a division of space into compartments, separated by membranes.
All the resistance to diffusion is concentrated in the membranes,
which constitute the resistance elements of the model, whereas the
compartments constitute the capacity elements. The diffusion coeffi-
cient for a solute in the medium may be reproduced by taking the
proper value for the permeation coefficient of the membrane. The
use of the model for numerical calculations in connection with com-
plicated diffusion problems is indicated.

The general treatment of diffusion processes leads to the diffusion equation,
which in the one-dimensional case takes the form

dc d de
W T (D(C’x’” W) 1)

Solutions of this equation for special cases of functional dependence of
D on concentration c, position x and time ¢, and for special boundary conditions
have been obtained, and may be found in the literature.’~¢ In general, however,
an analytical treatment runs into insurmountable difficulties and only a nume-

Fig. 1. The element of the model.
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rical treatment of the problem is possible. Here a simple model treatment of
diffusion processes is presented, which may be of help in obtaining numerical
solutions of practical diffusion problems. The model may be visualized as
a division of space into compartments separated by membranes. The mem-
branes have infinitesimal thickness and constitute all of the frictional resistance
to diffusion and may thus be looked upon as elements of resistance. The com-
partments constitute the elements of capacity and contain solutions under-
going instantaneous mixing. The solution in a compartment is thus considered
to have a uniform concentration.

We will first apply the model to one-dimensional diffusion and begin by
deriving an expression for diffusion in an element of the model, i.e. between
two compartments separated by a membrane, Fig. 1. We use the following
variables

V., V, volume per unit membrane area of respective compartment
¢y, ¢ concentration of solute in respective compartment

9 flux density of solute

a permeation constant for solute

We have the following relations ¢

j= *0(02501) d (2)
=y, Sy, &
1= Vl dt - V2 de (3)
Hence
de a
_dtl = v, (ca—¢4)
de, a (4)
W - v, (ca—¢y)
Subtracting the upper equation from the lower, we get
d(ce—c 1 1
—(_fit_l_)— = —a (V—l =+ T’;) (cg—¢4) (5)
and integration gives
oo !, 1
oy = (es—o) exp [ —a (- + 5 )] (®)

We will now apply this formula to the diffusion model, represented sche-
matically in Fig. 2. We consider a cylindrical region of unit cross section,
divided into compartments of equal volume ¥V and separated by the mem-
branes (which are perpendicular to the axial direction of the cylinder). The
operation of the model is thought to take place in discontinuous steps. We
assume the steps to have an equal length of time 7 and let the diffusion across
the membranes occur according to eqn. (6) with the initial concentrations
being fixed at the values existing at the beginning of the step. At the end of
the step the concentration changes due to the two diffusion fluxes are super-
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Fig. 2. Schematic representation of the diffusion model.

posed on the initial concentration and the value thus obtained is taken as
the initial concentration of the next step. In formulae this takes the form

1 t+7T . .
Citrr = Cit + A ft (Ji—Jis1) dt (7)
where ¢; and c; t47 are the concentrations in compartment ¢ at time ¢ and

t + 7,and 7, and 4 ji+1 are fluxes during the time interval ¢, ¢ + .
The integral in (7) is obtained from (2) and (6) with V; = V, = V. Thus

t+T
[T =1 Viera—ca—exp [—2a,a/V) ®)
Putting 1—exp[—2a,7/V] = a; we get finally
Citrr = Cy + $[@ir(Cim1i—C;t) — @ip1i(Cip—Ci1r)] (9)

The next step is to obtain a relationship between the parameters e,
7 and V, and the conventional diffusion coefficient D. This may be effected
by taking the limit v+ - 0, ¥V - 0 in (9). Introducing the spacial variable
x and observing that 4¢ = v and 4x = V we get from (9)

c(x,t + 1)—c(x,t) = 4 [a(x + V) d,c(x + V,t)—a(x,t) 4,6(z,t)] (10)
where A,c(z,t) = c(x,t)—c(x—V,t)
and d.c(x+V,t) = clxz+V,t)—c(x,t)

Hence
c(x,t + —;)—-c(x,t) 4, (% V2 @) 4 c(x t) ) (11)
In the limit v - 0, V —» 0 we get
dc d dc '
W= (D Tx_) (12)
Ve
with D =lim { — « (13)
A
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Obviously, in order to get a finite limit other than zero, restrictions have
to be imposed on the ways v and V may tend to zero. As the upper limit of
« is 1, we must always have V%/z > 0. The definition of « therefore imposes lim
« =0, and it may thus be approximated by the first term of its series expansion,
t.e. ¢« = 2a7/V. From (13) we then get the following expression for a

a=D|V (14)
In approximate calculations we may use the relation

Ve
Dy = ‘% T (227} (15)

where D, is the diffusion coefficient in the ¢-th cell at time ¢. It is convenient
to keep the values of v and V fixed. Then ¢ is a function of D, given by (15).
If D, is a function of concentration, position and time, this may readily be
taken into account in (15) and a numerical solution of the diffusion problem
is possible with the help of (9). We will here illustrate the procedure for the
simplest case of a constant diffusion coefficient.

We put arbitrarily ¢ = }, and use only a small number of compartments
(twenty) and let at ¢ = 0 a sharp boundary (concentration = 1 in arbitrary
units) be situated between the 10th and 11th compartment. Using eqn. (9)
we then calculate the elements of the matrix in Table 1, the columns
of which represent the concentration distribution at different times.

According to the method of moments the diffusion coefficient is given by

D= M

X, (16)

where m, is the second moment of the normalized concentration distribution, ¢.e.

Table 1.

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0.9999
1 1 1 1 1 1 1 0.9999 0.9997 0.9993
1 1 1 1 1 1 0.9998 0.9991 0.9979 0.9962
1 1 1 1 1 0.9990 0.9968 0.9936 0.9894 0.9846
1 1 1 1 0.9961 0.9893 0.9808 0.9714 0.9617 0.9520
1 1 1 0.9844 0.9649 0.9454 0.9271 0.9103 0.8950 0.8811
1 1 0.9375 0.8906 0.8555 0.8282 0.8062 0.7881 0.7728 0.7597
1 0.7500 0.6875 0.6563 0.6367 0.6231 0.6128 0.6048 0.5982 0.5928
0 0.2500 0.3125 0.3437 0.3633 0.3769 0.3872 0.3952 0.4018 0.4072
0 0 0.0625 0.1094 0.1445 0.1718 0.1938 0.2119 0.2272 0.2403
0 0 0 0.0156 0.0351 0.0546 0.0729 0.0897 0.1050 0.1189
0 0 0 0 0.0039 0.0107 0.0192 0.0286 0.0383 0.0480
0 0 0 0 0 0.0010 0.0032 0.0064 0.0106 0.0154
0 0 0 0 0 0 0.0002 0.0009 0.0021 0.0038
0 0 0 0 0 0 0 0.0001 0.0003 0.0007
0 0 0 0 0 0 0 0 0 0.0001
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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1
dc -

For the discreet distribution represented by the matrix it takes the form
Maj = Z z2 Ac, (18)

m2=

22 de(z) (7)

Denoting the elements of the matrix by c;; we find that the j:th column repre-
gents the situation at time (j—1) v and that for the i:th row o, = ({—10) V
and further 4 ¢;; = ¢;—ci;1;. Calculating the diffusion coefficient according
to this procedure we get

D=} v 1

-1 (19)
which is in agreement with (15) for « = }. Calculations of this type may
conveniently be carried out with digital computers.

The model treatment may also be applied to problems concerning diffusion
into bodies of different kinds, e.g. gel particles. To a first order approxi-
mation we specify the process as diffusion into a cell of the form of the
body, its jsurface acting as the membrane. We consider diffusion in the body to
be the rate determining step. Eqn. (6) may then be applied directly and we get

o 1 1
dc=dc exp[—a(T—i— Ve>t:| (20)

where 7 and V. are the per area volumes of the body and the external solution,
respectively.

We now have to relate the parameter a to the diffusion coefficient in the
body. This may be done by generalizing the result in (13). We observe that
the equations that led to (13) represent an analogy to (20), with V = V,
and with rate determining diffusion occurring in both volumes. As in
(20) rate determining diffusion was assumed to occur only in the internal
volume of the body, the parameter a there must have twice the value of that
in (13). Hence a = 2 D/V and (20) takes the form

4 ¢c= A4 c° exp |:—~%(71 + _I;_)t] (21)

From (21) we may also obtain the following formula for the half-time for
attainment of equilibrium

Vin 2
1 1
(- + )
We observe that in the model the solutions in the volumes V and V. were
assumed to have uniform concentrations. Therefore (21) is valid for bodies
with all kinds of geometrical form. The only parameters are the diffusion

coefficient in the body, D, and the per area internal and external volumes
V and V..

(22)

Ty, =
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As an example we calculate the half-time for diffusion into a sphere in an
infinite external solution of uniform concentration. For a sphere with radius
r the volume to area ratio is 1 r. Hence with V = } r and V., = o0 in (22)
we get

Ty, = 0.039 12/D (23)

This may be compared with the approximate formula of Vermeulen,”8
which gives

Ty, = 0.030 12D (24)

We see that the two formulae are in good agreement. Eqn. (22) can of
course be used for an approximate treatment of diffusion into bodies of differ-
ent kinds such as cylindrical rods, ellipsoids etc. We have only to determine
the volume to area ratio V of the body and insert it into (22).

We thus find that the model treatment of diffusion processes provides a
convenient method for the approximate solution of various diffusion problems.
Especially, it provides an excellent means for numerical calculations with
digital computers of complicated diffusion problems.
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