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Studies on Membrane Equilibria in Multicomponent Systems

HANS VINK

Institute of Physical Chemistry, University of Uppsala, Uppsala, Sweden

In the present work membrane equilibria in multicomponent
systems, where one of the components is a polymer, impermeable
through the membrane, have been studied. A theoretical treatment
of the problem is presented, and special considerations are given
effects arising from the binding of the permeable components by the
polymer. It is shown that the equilibrium distribution of the perme-
able components can be described by a gross equilibrium constant,
which contains the binding constant for the permeable solute and an
excluded volume term. The latter is related to the solvation of the
polymer by the solvent. The treatment is also applied to polyelectro-
lyte solutions, and it is shown that in these solutions, in addition to
the Donnan effect, the excluded volume effect is also present. Experi-
mental results from measurements on polyoxyethylene. polymetha-
crylic acid and dextran in agueous solutions are reported. The results
were found to be in agreement with the theoretical considerations.

The present investigation deals with membrane equilibria in multicom-

ponent systems, where one of the components is a polymer, impermeable
through the membrane and the other components all are permeable. The
equilibrium conditions in such systems are specified by the osmotic pressure
and the equilibrium distribution of the permeable components.

Such systems are of interest for osmotic measurements with mixed solvents.
Also, from the knowledge of the equilibrium distribution of the permeable
components, information on the interactions between the polymer-permeable
components may be obtained.

We will here first give a theoretical treatment of the problem, based on
equilibrium thermodynamics, and present then experimental data from
measurements carried out on some polymers in aqueous systems.

THEORETICAL

We will first consider the thermodynamic equilibrium conditions for
membrane equilibria in multicomponent systems. The problem has in more or
less general form been treated in numerous recent publications, notably in
those by Scatchard,! Staverman et al.2, Strauss and Ander? and Eisenberg.*
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Here a somewhat different approach will be used. For convenience we will
restrict the treatment to three components, the generalisation to a greater
number of components being obvious. The components will be designated in
the following way: component 1 — solvent, component 2 — permeable solute,
component 3 — polymer.

The equilibrium conditions are obtained by equating the chemical poten-
tials for the permeable components on the two sides of the membrane. The
chemical potential of a component may be treated as a function of pressure,
the mole fraction of the component and its activity coefficient. Taking the solu-
tion on the ”solvent side” of the membrane as reference, we may expand the
chemical potential into a Taylor series around this state. Using conventional
notations and retaining only first order terms, we get

0,ui
(?:ci

The first differential coefficient in (1) is equal to the partial molar volume
v;; the other two may be obtained from the expression for chemical potential
at constant pressure

Hi = #io + RT In fixi (2)

Hence the equilibrium conditions become

m Oy,
wilp + 7, fi + Afi, 2 + Ax) = w(p, fia) + 0'; 7+ 0’? Af; +

A.’E,(l)

v+ BT AL pp A% (3)
h Ty

ogr + BT A2 o pp 4% _ (4)
f2 Lo

From these equations expressions for the osmotic pressure and the distri-
bution of permeable components may be obtained.

To obtain an expression for the osmotic pressure we add (3), multiplied
by z,, to (4), multiplied by x,. Observering that

X0y A+ Tgg = v (5)

where v is the molar volume of the mixture of components 1 and 2, we then
get

%: —(4dxy + dwy) — < Ty A]} 4 @y Z}"]} ) (6)
As
2yt Xy =1 (7)
we get for the first term in the right member of (6)
—(dxy + Axy) = Axg (8)

To evaluate the second term we use Gibbs-Duhems equation for the activity
coefficient
ZadIn fi=0 (9)
i
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We now let z, on the solvent side be zero and choose the standard state in

h
such a manner that f, =1 when @, — 0

With z, as the independent variable eqn. (9) may be integrated in the form
Az, Axg Ay
f 5”1dlnf1 dxa—{—f x2dlnf2 dx3=——f xadlnfidx3 (10)

dz, dag dz,
Using power series expansions for z; and x, and the mean value theoreme,
the integrals in the left member take the form
Az dInf
f @+ oy + ) ol ey = s A i+ @@ dgy dlnfi ke (11)
3

where 0 > @ > 1.
For the right member of (10) we get by partial integration

Ax, Az,
" ity [ gy da (12)
Assuming that In f, may be expanded into the power series
In fo=a @+ f a2+ - (13)
we get for (12)
—%}dzs In f—§ B (dag) — - - (14)
Using (11) and (14), and neglecting higher order terms, we get for (10)
4 4
xy ffl + xz—fii = — } dz; In f; (15)
1
With (8) and (15) eqn. (6) reduces to
v
w7 = 4% (1 +31nfy (16)

This equation, which is valid in dilute solutions, is of some importance.
It is of the same form as the equation for osmotic pressure in a two-component
system, the only difference being that the partial molar volume for the solvent
has been replaced by the molar volume of the composite solvent. It shows
that in osmotic molecular weight determinations the use of multicomponent
solvents is perfectly admissible.

We will now examine the equilibrium distribution of the permeable com-
ponents. It is convenient to introduce the following relation

Vg =M ¥ (17)

After eliminating x from (3) and (4) we then get

x, Az x Af Af
Ax, = 1 2 + 1 ( 2 n 1) 18
! N Ty n f2 1 (18)
Using (8) and (18) we finally get
x, dx Z, % Af Af
A —_ . 7 3 12 ( 2 1) 19
“ Tyt Ny xy + nxy \ fo " f1 (19)

Acta Chem. Scand. 17 (1963) No. 9



MEMBRANE EQUILIBRIA 2527

and

_ dxg 4% Af, _ Af, 90
- (%4 )

T, + nx, T, + nw,

These equations show that the changes in the mole fractions of the perme-
able components split into two terms. One ”ideal term’’ depends on the change
in the mole fraction of the polymer and on the relative magnitudes of the partial
molar volumes of the permeable components. The other “nonideal term”
is due to the interaction with the polymer and is expressed in terms of the
activity coefficient increments of the permeable components. ’

We will now consider the ideal case. Then, by definition

Afy = 4f; =0 (21)
and (19), (20) become
x, dx
Az, = — 1 73 22
1 xl + nxz ( )
___ nxy Axg
Axy = = F (23)

For the “’solution side”” we now get

x, + 4w, Ty(@y + nap) — @y dxy @y @y + @y, — day (24)
Xy + A, To(Tq + NXy) — NTy ATy Xy Xy + WXy — N ATy

This shows that even in the ideal case, provided »n 5 1, the distribution
of the permeable components is unequal on the two sides of the membrane.

If n>1
ry + 4wy Ty
Ty 4 Axy = Lo (25)

which shows that the permeable component with the smaller partial molar
volume is enriched on that side of the membrane where the pressure is higher.
However, from (24) it is quite obvious that the effect is negligibly small in
macromolecular systems, as then dx; <<<< 1.

From measurements of the osmotic pressure and the distribution of the
permeable components it would be possible to determine the activity coeffi-
cient increments for all components. From (16) the activity coefficient for the
polymer is obtained and from (15), together with (19) or (20), the activity
coefficient increments for the permeable components follow.

The activity coefficients so determined are of a somewhat formal nature.
They refer to the total concentrations of the permeable components and thus
do not take into account association effects between the polymer and the
permeable components. In the following we will take this effect also into
account and we will now derive an equation that connects the variables in
eqn. (20) to measurable quantities. As from the viewpoint of experimental
accuracy the solutions are best prepared by weighing the different components,
we will use weight concentrations.
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The concentrations of the permeable solute (component 2) and polymer
(component 3) will be given in the following way:

¢,: m moles per 1 kg of solution,

cy: ¢ g per 1 kg of solution.

We will further designate the molecular weights of the components 1, 2
and 3 by M,, M, and M,, respectively.

On the solvent side, by definition

2y —m / ( n l@(’___:n_M_)> (26)

For the analogous expression on the solution side we take into account the
binding of components 1 and 2 by the polymer. Hence

m + Am — Am,

AR = 1000 — (m 4 Am)M, —c —y (27)
B c — (m m)My —c—y
m + Adm Am, + i, -+ o,
where
4Am = total change in ¢, (in moles per 1 kg of solution)

4Am; = the amount of component 2 bound by the polymer (in moles per 1 kg
of solution)

y = the amount of component 1 bound by the polymer (in g per 1 kg of
solution)

Dividing (27) by (26) we get}

1+Ax2: 1 4 (dm—Admy)/m
Ly N M, [4m—am, + (¢/M;)] —dm M, — ¢ — y (28)
1000 + m (M, — M,)

For dilute solutions (low values of m and c¢) we get, after some obvious
approximations

Axy  Am — dm, e c-+y

Xy m 1000

Using (20) and (29) and observing that the ideal term in the former equa-
tion is negligible, we get:

Am c Aam, y x, (Af2 o 4h

(29)

N — — =4J (3
m T 1000~ m 1000 z, L nas \ fa " ) (30)

In this equation the left member represents an experimentally determinable
quantity and we will designate it by d. For low degrees of binding of com-
ponent 2, we may assume the different binding sites to be independent of
each other. The mass action law then gives

_ . 4m
T (/M) — dmy)im
or
kem

W T om) (31)

Am, =

Acta Chem. Scand. 17 (1963) No. 9



MEMBRANE EQUILIBRIA 2529

where k is the equilibrium constant for the binding reaction and M is the
equivalent weight of the polymer. In the same way, we get for y in dilute
solutions (component 1 in large excess).

y = ac (32)
Substituting (31) and (32) into (30) we get

k «a %, Afs Afy

0= (;W(1+/cm) 1000)c x, +nx2( fa K f ) 59)

In this equation the right member contains four unknowns, namely the
two activity coefficients and the binding constants « and k. Obviously they
are not all determinable. It would be possible to put both « and k convention-
ally equal to zero and let all deviation from ideality be determined by the
activity coefficients alone. A similar procedure is often used in the case of low
molecular weight substances. As mentioned above it would then be possible
to determine all the activity coefficient increments if the osmotic pressure was
simultaneously measured. However, this procedure seems not advisable in
polymeric systems, as it would lead to an incorrect concentration dependence
of the activity coefficients. To see this we recall that the analytical form of
the activity coefficient in a binary mixture (see any standard textbook in
thermodynamics) is:

Inf, = X a, @, * (34)
k

where for nonelectrolyte solutions in general 1; = 2 and for electrolyte solu-
tions, where long range forces are operative, 4, = 1.5.

It is reasonable to assume the same concentration dependence in multi-
component systems. It would then be possible to express the limiting concen-
tration dependence of the activity coefficient term in (33) in the form

Zy Afy 4f; ) 1
— — N — C 35
Zy + Ny ( fa Iy d (85)
with 4 = 1.5.
After division by ¢ (33) would then take the form
0 k a
S N SN P A-1
¢ <M(1 o) 1000 ) he (36)

Thus, if £ and e were put equal to zero §/c would tend to zero with c.
This, however, is contrary to experimental observations, Fig. 3, and we con-
clude that the first term in (36) is physically significant. We will now turn our
attention to the experimental side of the problem and will later give an inter-
pretation of eqn. (36) in the light of the experimental results.

EXPERIMENTAL

The studies of the membrane equilibria were carried out in a cell of the form
shown in Fig. 1. It was essentially an enlarged block-type osmometer cell made of poly-
ethylene. The volume of each half-cell was 40 ml. The membrane was a commercial
cellophane membrane (’sausage-casing’’ from The Visking Corp., Chicago). The equilibrs-
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Fig. 1. The dialysis cell. The polyethylene

cell is supported by a brass cover and held

together by a central screw. The cell is

filled and emptied through polyethylene
tubes.

AR

tion of the solutions was carried out in an air box inside a water thermostat, at 25°C for
about 24 h. This was well in excess of the actual time necessary for attainment of equili-
brium, which was found by trial to be of the order of 4 h. The experiments were carried
out with three different polymers. They had the following characterizations:

Polyoxyethylene (POE ). The sample was purified by precipitating the polymer from
a solution in a benzene-ethanol mixture with hexane. DPy = 10 000.

Polymethacrylic acid (PMA). The sample was purified by precipitating the polymer
from a solution in methanol with ethyl ether. DPy = 1300.

Dextran. The sample was purified by precipitating the polymer from a solution in
water with ethanol. DP,, = 940.

The choice of the permeable solute was limited by the analytical method used for
the concentration determination. In principle all accurate chemical or physical methods
for concentration determination can be used in this connection. In the present experi-
ments use was made of the acid-base titration method. Owing to the simplicity and high
accuracy of this method it was well suited for this type of measurements. In the present
work alkali, mostly sodium hydroxide, was used as the permeable solute.

We will now present the experimental results obtained with the different polymers.

POE. In these experiments only NaOH was used as the permeable solute. The general
experimental procedure was the following. The equilibrated solutions were removed
from the cell and aliquots of 25 m] of each solution were transferred with a pipette to
glass stoppered flasks and weighed. Most of the alkali in the solutions was then neutra-
lized by adding to each solution 25 ml of a standard HC] solution with a precision pipette.
The final neutralization of the alkali was then carried out by titrating with a 0.05 M HC1
solution using a microburette and with phenolphthalein as indicator. By this method
the concentrations of NaOH in the two solutions could be determined with a relative
accuracy of about 0.01 9%,. Two different series of measurements were undertaken. In
one the concentration of POE was kept constant and the concentration of NaOH varied,
while in the other these conditions were reversed. The results are shown in the form of
diagrams, Figs. 2 and 3.

PMA. Here NaOH was used as the permeable solute and the general experimental
procedure was the same as with POE. The titration of the solution containing PMA was
carried out to the point where only the excess NaOH was neutralized and the PMA was
left in the form of its Na-salt. A titration curve of PMA in the presence of an excess of
NaOH is shown in Fig. 4 and we see that there is a distinct equivalence point in the
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Fg. 2. Measurements with POE and PMA
at constant polymer concentration. Curve 1
for PMA with ¢ = 5.2 g/kg; curve 2 for
POE with ¢ = 4.5 g/kg. Open circles repre-
sent 4m for NaOH in PMA solutions in the
presence of NaCl, from top to bottom
mNact = 0.20, 0.40 and 0.80 M/kg. The
crosses on curve 1 represent the corre-
sponding 4m values referring to the total
permeable electrolyte concentration. Dot-
ted curve represents eqn. (40) with ¢ = 5
g/kg and with ¢ = 0.25.
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Fig. 3. Measurements with POE and PMA

at constant NaOH concentration. Curve

1 for PMA with m = 0.25 M/kg; curve 2
for POE with m = 0.5 M/kg.

vieinity of pH 10. The titration of the solutions was here carried out with thymolphthalein
as indicator (pH interval 9.3—10.5) and the color change interval was found to be quite
narrow. Measurements were carried out both at a constant PMA. concentration, varying
the NaOH concentration, and vice versa. Some measurements were also carried out with
NaOH in the presence of varying amounts of NaCl. The dm-values for NaOH were depres-
sed by the presence of NaCl. However, assuming that NaCl is displaced to the same extent
as NaOH, and calculating 4m for the total amount of permeable electrolyte, the same
results were obtained as in pure NaOH solutions. The results are shown in Figs. 2 and 3.

Fig. 4. Titration curve for PMA in the
presence of an excess of NaOH.
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Deaxtran. In these experiments the general procedure was the same as in the case of the
other polymers. However, here a certain binding of alkali occurred, owing to the acidic
nature of the hydroxyl groups in dextran. The binding was so weak, however, that the
titration curve for the alkali was not affected by the presence of dextran. Therefore at
the equivalence point all alkali was neutralized. The indicator used was phenolphthalein.
In these experiments the permeable solutes were NaOH and NaOH in the presence of
neutral salt (NaCl).

8/c-10?

Iig. 5. Measurements with dextran in
NaOH solutions. Curve 1 for solutions with
0.5 M NaCl and with ¢ = 6.8 g/kg, curve 2
for solutions in pure NaOH and with
¢ = 8.5 g/kg. Open circles on curve 2 refer
to a dextran concentration of ¢ = 3.1 g/kg.

The results are shown in Fig. 5. We see that the dependence of d/c on the alkali
concentration is of the form predicted by eqn. (36) and that practically no dependence
on the polymer concentration can be observed. It is interesting to note that the presence
of NaCl increases the acid strength of dextran. This is in accord with observations made
by other workers.’®

DISCUSSION

In deriving eqn. (33), the basic equation determining the distribution of
the permeable solute, we introduced four parameters. It now remains to
examine their physical significance. As already mentioned, the experimental
results showed that the chemical binding term, [k/M(1 + km)] — 0.001 «, in
(36) is in general different from zero and therefore a description of the equi-
librium situation with the help of the activity coefficients alone is not possible.
The sign of this binding term depends on the relative magnitudes of the
binding constants k and e for the permeable solute and the solvent respectively.
Both positive and negative signes were found in the present experiments.

The parameter « was introduced to take into consideration the binding of
solvent by the polymer. This ”’chemically bound” solvent was considered to
be inaccessible for the permeable solute. One might feel tempted to consider
this solvent to constitute the “solvating solvent” of the polymer. However,
as it appears from later discussion, this interpretation of the effect would be
more or less arbitrary. Thus, as the exact mechanism of interaction is unknown
the effect could more adequately be termed the “excluded volume’ effect.
Then, formally, « is the amount of solvent per 1 g of polymer from which the
permeable solute is excluded.

The parameter k is the equilibrium constant for the binding of the perme-
able solute by the polymer. It is important to note that a separate determina-
tion of k£ and « is not possible. Only the composite term, (/M) — 0.001 ¢, is
experimentally determinable and it is obtained by extrapolating (36) to zero
concentrations of the polymer and the permeable solute. It can be looked upon
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as the gross equilibrium constant for binding of the permeable solute. We may
designate it by K, thus
< k a

K= — o000

(37)

In the case any binding of the permeable solute by the polymer can be
precluded from chemical reasons, & can a priort be put equal to zero. In this
case the determination of K would yield the excluded volume paramter «.
This is probably the case with POE. From Fig. 3 we thus get « = 1.7 g of
water per g of POE.

The experiments with dextran in NaOH solutions show that it is possible
by membrane equilibrium studies to determine the gross binding constant
rather accurately even for very slight binding effects. The gross equilibrium
constants for dextran, obtained from measurements in solutions of pure NaOH,
and NaOH in the presence of 0.5 M NaCl, are K = 7 x 10%and K = 11 x 1073,
respectively. From the equilibrium constant in NaOH solutions we may
calculate the thermodynamic acid dissociation constant K for a glucose unit.
As the experimental K-value was obtained by extrapolating to zero electrolyte
concentration, the concentrations in eqn. (31) may be replaced by the corre-
sponding activities and we get

Ago- Gro- Ayt K
k‘ = e = —— = —
Crou %on- Cron Ky K,

(38)

where K is the ionic product of water. Using the values M = 162 and
K, = 107 and neglecting the excluded volume term in (37) we get
K = 1.1 x 107 at 25°C. For free glucose we get from the literature®
K, = 3.7 X 108 at 18°C. Thus, there is a substantial difference in the acidity
constants for a glucose unit in dextran and for free glucose.

The present treatment can also be applied to Donnan equilibria, encoun-
tered with polyelectrolytes. We will first compare the experimental results
with the classical Donnan theory. With the present notations the following
relation is obtained.

m? = (m + Am) [m + dm -+ (ce/ M)] (39)

where M is the equivalent weight of the polyelectrolyte and e its degree of
dissociation. Solving (39) for Am we get

Am = —[m+ (ce/2 M)] +V m? + (ce]2M)? (40)

In Fig. 2, together with the experimental data, a curve representing eqn.
(40) for PMA with ¢ = 5 g/kg and with ¢ = 0.25 is shown. We see that at very
low salt concentrations the agreement with (40) is excellent. At higher salt
concentrations, according to the Donnan theory, 4m should asymptotically
approach a constant value with increasing m, whereas the experiments indicate
that 4m increases linearly with m. This concentration dependence, on the
other hand, is predicted by the excluded volume effect (36). It thus appears
that in polyelectrolyte solutions these two effects are superposed. We will
now give an explanation of the behaviour of polyelectrolyte solutions in terms
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of the excluded volume effect. We will base the present treatment principally
on macroscopic considerations.

The equilibrium situation in a macroscopic system is adequately described
in terms of activities. If actual chemical binding occurs and this is taken
separately into account, the concentrations of the different species are speci-
fied and the activities are unequivocally determined by the activity coeffi-
cients. Thus, the whole situation can be described by the activity coefficients
and the equilibrium constants for chemical binding.

The situation in a polymer solution is complicated by the fact that these
solutions are inherently inhomogeneous. The concentration of polymer seg-
ments is highest in the center of gravity of a polymer molecule and decreases
gradually in the outward direction. In dilute solutions the domains of different
polymer molecules are separated and the concentration of polymer segments
is zero in the intermolecular space between the polymer molecules. In concen-
trated solutions the domains overlap to a certain extent and variations in the
segment density are less pronounced. It is obvious that in such systems the
true activity coefficients and the equilibrium constants for chemical binding
(both defined over microscopic regions) vary from point to point and the quan-
tities entering eqn. (33) are thus special average values over the domain under
consideration. For the activity coefficients these averages are the ones that
the membrane “feels” and they may be termed the ’membrane average”
values of the activity coefficient. Of course, an evaluation of these averages
requires specified models for the macromolecule and its interactions with the
solvent and the permeable solute, as well as for the functioning of a semi-
permeable membrane, and at present none is sufficiently developed. However,
it is easy to see, that the gross macroscopic effect of such an averaging process
gives rise to the excluded volume term in the equilibrium equations. Assum-
ing that in dilute solutions the ’membrane average’ activity coefficients
are primarily determined by the activity coefficients in the intermolecular
space between the polymer molecules it follows that their increments would
tend to zero with the polymer concentration. On the other hand the activity
coefficients inside the domain of a polymer molecule, which determine the
permeable solute concentration in that domain, would essentially be indepen-
dent of the polymer concentration and would thus give rise to the constant
“excluded volume” term in eqn. (36).

In polyelectrolyte solutions this term appears to be very large at low salt
concentrations. We may assume that it is due to Donnan equilibria set up
between the domains of the polyelectrolyte molecules and their surroundings
and thus is determined by eqn. (40). At higher salt concentrations the amount
of salt excluded by this mechanism becomes essentially constant and the addi-
tional exclusion of salt found in the experiments must be due to some other
mechanism in which the exclusion is proportional to the salt concentration and
thus gives rise to a constant excluded volume factor. The latter occurs even
with non-electrolyte polymers and probably the effect is of the same nature
in both cases.

It should be mentioned here that an explanation of the Donnan effect in
terms of an “excluded volume” effect has been offered by Strauss and Ander 3
in a study of membrane equilibria with polyphosphate solutions. They sug-
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gested that the excluded volume effect is due to the exclusion of the permeable
salt from the counterion atmosphere, surrounding the polyelectrolyte chain.
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