Spectroscopic Calculations on Sulphur Hexafluoride

I. Mean-Square Amplitude Matrix and Mean Amplitudes of Vibration

B. H. BYE and S. J. CYVIN

Institutt for teoretisk kjemi, Norges tekniske høgskole, Trondheim, Norway

Vibrations of octahedral XY₆ type molecules or ions $(O_h$ symmetry) have been studied theoretically by several workers ¹⁻⁵. In the present work the mean amplitudes of vibration for sulphur hexafluoride are communicated.

The L matrix (normal coordinate transformation matrix; S = LQ) was determined by the standard method of characteristic vectors applied to the GF matrix ⁶. The form of the G matrix is given by Pistorius ³ and other authors, and need not be repeated here. In the present work the same symmetry coordinates as those specified in the mentioned paper of Pistorius ³ were utilized. Numerical force constants were also taken from Pistorius ³.

The mean amplitudes of vibration $(u)^7$ were calculated by the Σ -matrix method,

using $\Sigma = L \Delta L^s$. Σ is the mean-square amplitude matrix. There are three different u-values, viz. $u_{\rm XY}$ for the bonded atom pairs, $u_{\rm YY}$ for the short nonbonded YY atoms, and $u_{\rm YXY}$ for the YY pair of atoms on opposite sides of the central atom.

Table 1. Vibrational constants for sulphur hexafluoride.

Species	Force constants (mdyne/Å)	Mean-square amplitude quantities ($ ext{Å}^2$) $T=0$ 298 °K	
A_{1g}	6.723	0.001145	0.001201
$E_{\varrho}^{2\circ}$	4.641	0.001378	0.001507
E_g^{ro} F_{14} (11)	5.332	0.002060	0.002107
(22)	1.031	0.008065	0.008670
(12)	-0.914	0.002072	0.002079
F_{2g}	0.768	0.006775	0.007949
F_{2u}^{-3}	0.699	0.005021	0.007250

Table 2. Mean amplitudes of vibration for sulphur hexafluoride.

Atom pair (Distance)	Mean amplitude of vibration (Å)	
	T = 0	298°K
SF (Bonded)	0.04099	0.04190
\mathbf{FF} $(\mathbf{F}\cdots\mathbf{F})$	0.05557	0.06041
$\mathbf{FF} (\mathbf{F} - \mathbf{S} - \mathbf{F})$	0.05100	0.05301

The squared u-values, i.e. the mean-square amplitudes of vibration (or mean-square parallel amplitudes) are expressed linearly in terms of the Σ -matrix elements as follows.

$$\begin{array}{ll} u_{\rm XY}^2 &= \frac{1}{8} \, \varSigma \, (A_{1g}) \, + \frac{1}{3} \, \varSigma \, (E_g) \, + \frac{1}{2} \, \varSigma_{11}(F_{1u}) \\ u_{\rm YY}^2 &= \frac{1}{8} \, \varSigma \, (A_{1g}) \, + \frac{1}{8} \, \varSigma \, (E_g) \\ &+ \frac{1}{2} \, \varSigma_{11}(F_{1u}) \, + \frac{1}{8} \, \varSigma_{22} \, (F_{1u}) \, - \frac{1}{2} \, \varSigma_{12}(F_{1u}) \\ &+ \frac{1}{8} \, \varSigma \, (F_{2g}) \, + \frac{1}{8} \, \varSigma \, (F_{2u}) \\ u_{\rm YXY}^2 &= \frac{2}{3} \, \varSigma \, (A_{1g}) \, + \frac{4}{3} \, \varSigma \, (E_g) \end{array}$$

Here A_{1g} , E_g , etc. refer to the various symmetry species.

For the obtained values of the Σ -matrix elements, see Table 1, where also the force constants of the symmetrized F matrix are included. The final results of mean amplitudes of vibration are given in Table 2. These results are believed to be of great interest in modern electron-diffraction studies 9 .

- Heath, D. F. and Linnett, J. W. Trans. Faraday Soc. 45 (1949) 264.
- Venkateswarlu, K. and Sundaram, S. Z. physik. Chem (Frankfurt) 9 (1956) 174.
- Pistorius, C. W. F. T. J. Chem. Phys. 29 (1958) 1328.
- Claassen, H. H. J. Chem. Phys. 30 (1959) 968.
- 5. Block, H. Trans. Faraday Soc. 55 (1959) 867.
- Wilson, E. B., Jr., Decius, J. C. and Cross, P.C. Molecular Vibrations, McGraw Hill, New York 1955.
- Cyvin, S. J. Kgl. Norske Videnskab. Selskabs Skrifter No. 2 (1959).
- 8. Cyvin, S. J. Spectrochim. Acta 15 (1959).
- Kimura, M. Nagoya University, Japan. Private communication.

Received July 2, 1963.