A Note on the Crystal Structure of Ti₂P and V₂P

TORSTEN LUNDSTRÖM

Institute of Chemistry, University of Uppsala, Uppsala, Sweden

A metal-rich phase in the Ti-P-system has been reported by Biltz et al¹. In the V-P-system a metal rich phase has been prepared both by Zumbusch and Biltz ² and by Chêne ³. The only crystallographic constants reported, however, are the unit cell dimensions of Ti₃P ⁴. During investigations on Me₃P-phases ⁵ made at this Institute it was also found desirable to include an examination of Ti₃P and V₃P.

 ${\rm Ti_3 P}$ was prepared from titanium turnings (analyzed purity 99.8 % Ti, 0.1 % Fe, 0.066 % O, 0.006 % N) and red phosphorus (better than 99 % purity) as follows. Stoichiometric amounts of the reactants were sealed under vacuum in a silica capsule and simultaneously heated and shaken in a furnace, constructed by Dr A. Brown of this Institute. After heating at 800 °C for 48 h no unreacted phosphorus was visible. In order to complete the preparation, the inhomogeneous product was arc-melted in a purified argon atmosphere with only an inappreciable loss of phosphorus. V_3P was prepared in a similar way from 99.7 % V and red phosphorus. For the present purpose it was not considered necessary to analyze the products. Powder diffraction patterns were taken with Guinier focussing cameras using ${\rm Cu} K\alpha$ and ${\rm Cr} K\alpha$ radiation and with silicon $(a=5.4305 ~{\rm \AA})$.

Table 1. X-Ray powder data for V_3P (Cr $K\alpha$ radiation, $\lambda = 2.2909$ Å).

hkl	$\sin^2\!\Theta_{ m o} imes 10^5$	$\sin^2\!\Theta_{ m c} imes 10^{6}$	$I_{ m o}$	p $ F ^2$ for $oldsymbol{arepsilon_1}$ Ref. 6
201	11754	11745	v.w.	20.4
310)		``	•	7.9
130 }	14881	14871	} w.	0.8
031	19185	19183	w.	36.8
311	20680	20670)	18.1
131 }	20080	} 20070	} m.	136.2
400	23804	23800	w.	20.9
321)	25129	25133	\ v.st.	349.2
231	23129	<i>f</i> 20100	∫ v.su.	176.4
112	26157	26155	v.st.	327.4
330	26770	26775	st.	155.6
$\boldsymbol{202}$	29138	29130	$\mathbf{m}.$	89.5
420	29748	29750) st.	231.2
240 ∫	23140	<i>} 23100</i>	∫ ³⁰ .	0.1
212	30624	30618	} v.w.	0.5
122 ∫	80024	5 30018	<i>f v.</i> ":	9.9
411)	31082	31083	\ v.st.	75.7
141 ∫		,	,	365.7
331	36567	36568	w.	36.9
222	35080	35080	st.	132.7
302	36567	36568	w.	16.9
312	38045	38055	} m +	210.0
132 }	00020	,) — '	0.0
510	38657	38675	} m +	4.3
150 ∫	00001	,)	148.8
431)))	14.4
341 }	$\boldsymbol{42977}$	42983	\ v.w.	1.7
501)	444#0	J	J	4.3
511	44458	44470	m.	
402	46977	46980	m.	

Acta Chem. Scand. 17 (1963) No. 4

Table 2. Unit cell dimensions at room temperature. (Estimated accuracy \pm 0.05 %).

Phase	a-axis (Å)	c-axis (Å)	c/a
${ m Ti_3P}$	9.956	4.988	0.5005
V_3P	9.387	4.756	0.5067

Table 1 gives the X-ray powder data for V_3P . There are a further three weak reflections which can be identified as oxide lines. The agreement of the unit cell dimensions and X-ray intensities for V_3P and ε_1 (FeP_{0.37}B_{0.63}) 6 shows that V_3P belongs to the ε_1 structure type, space group $P4_2/n-C^4_{4h}$. The presence of lines h+k+l=2n+1 demonstrates that V_3P is not isostructural with Fe₃P, which has the space group I^{4} 6.

The powder pattern and Weissenberg photographs of Ti_3P show that this phase is also of the ε_1 -type. A single crystal investigation of Ti_3P is currently being undertaken and will be published in this journal.

Acknowledgements. This work has been supported by the Swedish Natural Science Research Council.

The author wishes to thank Prof. G. Hägg for his kind interest and Dr. S. Rundqvist for valuable discussions.

- Biltz, W., Rink, A. and Wiechmann, F Z. anorg. Chem. 238 (1938) 395.
- Zumbusch, M. and Biltz, W. Z. anorg. Chem. 249 (1942) 1.
- 3. Chêne, M. Ann. Chim. 15 (1941) 187.
- Schönberg, N. Acta Chem. Scand. 8 (1954) 1460.
- 5. Rundqvist, S. Arkiv Kemi 20 (1962) 67.
- 6. Rundqvist, S. Acta Chem. Scand. 16 (1962) 1.

Received March 25, 1963.

Constituents of the Umbelliferous Plants

II *. A Note on the Isolation of O-β-D-Glucosyl-β-sitosterol from the Root of Levisticum officinale L.

BENT EICHSTEDT NIELSEN and HELMER KOFOD

Chemical Laboratory B, The Royal Danish School of Pharmacy, Copenhagen, Denmark

Naturally occurring sterol glycosides (sterolins), were first reported in 1913 by Power and Salway ¹, and since compounds of this type have been isolated from a variety of plant species ²⁻⁴.

In continuation of our attempts to find lignans in the plant family Umbelliferae ⁵ a sterol glycoside was isolated from the root of *Levisticum officinale* L. and identified as *O-β-D-glucosyl-β-s*itosterol.

The root also afforded angelic acid as well as an unidentified glucoside, m.p. $228-232^{\circ}**$.

In the initial steps of the investigation the method described in the U.S.Pharmacopoeia XI for the preparation of podophyllin resin (Resina podophylli) was followed. The resin prepared in this way was fractionated according to the method of Hartwell and Detty ⁶ starting with a chloroform extraction. The alcohol-benzene solution prepared in this manner was chromatographed on alumina (Alcoa). The results are presented in Table 1.

Fraction 7. On evaporation this fraction left a yellow waxy solid, which upon washing with diethyl ether yielded a colourless powder. A total of 190 mg was obtained.

The product recrystallized from pyridine-ethanol yielded a colourless compound positive to the Liebermann-Burchard as well as the Molisch and Withby ⁷ tests, m.p. $283-286^{\circ}$ (decomp.), $[\alpha]_{\rm D}^{26}-41.5^{\circ}$ (c 0.397, pyridine).

^{*} Part I: Acta Chem. Scand. 17 (1963) 1161.

^{**} Melting points are uncorrected and determined in capillary tubes.