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A procedure is described for determining the time when a chemical
reaction has started from the measurements taken immediately after
the start.

Formulae for smoothing kinetic data and obtaining time deriva-
tives of the smoothed data are derived, using a least squares proce-
dure. These formulae only apply to measurements taken at equidis-
tant times.

¢
Finally the evaluation of the integral oM f :p(t)e}" dt, which occurs
0

in kinetics, is given in terms of differences of ¢.

1. The most common procedure for determining rate constants from kinetic
data is to compare the measured values with the integrated rate expression.
In certain cases, however, it is more convenient to use a differential method in
which the rate expression is compared with a combination of concentrations
and time derivatives of these, the latter being obtained by graphical or nume-
rical differentiation. A discussion of such a procedure is given by Benson!
who suggests that the most accurate way to obtain the derivative is by plot-
ting the concentration as a function of time and drawing asmooth curve through
the points. From this curve the slopes are obtained using a tangent meter.
If the concentrations are measured at unequal time intervals, this is probably
the simplest way to obtain the derivative, but if this is not the case, as for
instance when automatic measuring devices are used, or when it is possible
to plan the experiment such that measurements are taken at equal intervals,
we believe that a purely numerical smoothing and differentiation procedure
is preferable. We shall use here a smoothing based on the method of least
squares,? but it is clear that under certain circumstances such as when very
many measurements taken at short time intervals are available, a simpler
procedure such as ’smoothing by fives’” might give equally good results.

Another numerical problem which is somewhat more complicated but also
may occur in kinetic work is the problem of solving a differential equation in
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which an experimentally determined function occurs. An example of this is
given in the accompanying paper 3 where it is shown that the solution of a
certain second order differential equation can be expressed in terms of an
integral

I(t)=e—# [ p(t)eMdt (1)
J

The function I is, as is seen, also the solution of the differential equation
dr
it + il = g(t) (2)

with the initial condition I(0) = 0. Furthermore it is known about the measured
function ¢ that ¢(0) = 0, and since ¢ is a degree of reaction we must have
¢(00) = 1, from which it follows that I(c0) = 1/A.

One could now attempt to calculate the function I by straight forward
integration of (1) using Simpson’s formula on smoothed values of ¢. Since the
integrand increases very rapidly with ¢, this is not a good procedure, and Har-
tree has suggested finding the value of the integral (1) by solving the differen-
tial eqn. (2) numerically. In the case discussed in Ref.? this then effectively
means that the solution of a second order differential equation (which contains
two integrals of this type) is reduced to solving two very much simpler first
order equations. If 4 is very large, even the solution of the differential equation
becomes inconvenient, and for that case we shall therefore develop a method
of expanding the integral in terms of the differences of ¢.

Whenever one wants to perform a numerical integration of a function
measured at certain time intervals, it becomes of importance to know the correct
time corresponding to the experimentally measured quantity. A constant addi-
tive error in the time, which is of minor importance for differentiation, can
here influence the result greatly. The problem therefore becomes how to
determine precisely when the experiment started.

We believe that the procedure one should adopt here is to define the start
of the time scale in some arbitrary fashion (such as the time when a pipette
is half empty) and then record data at equal time intervals. When the experi-
ment is over, the time which the recorded data show to be the time of the start
of the reaction is determined in the following way:

The measured values of ¢(t') where ¢’ now stands for this preliminary time
scale, is fitted to a polynomial expression

0= 9o+ oit' + @'+ ... (3)

for small values of #’, but neglecting the first, or the first two or three measured
values in the case where the curve has a sigmoid shape. Special care should
be taken to avoid points which seem to indicate incomplete mixing. The number
of points left out and the number of points included, as well as the degree of
the polynomial is obviously open to a certain degree of arbitrariness. It is our
experience, however, that in the end it turns out that the choice does not
change the results very much. The start of the reaction is then defined as the
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numerically smallest value of ¢ for which the polynomial is zero. Denoting
this value by ¢;,, we have that the correct time is equal to ¢t = t' 4 ¢,. After
the measured data have been smoothed using a least squares procedure one
can then use ordinary interpolation technique ¢ to determine ¢ at equally
spaced values of ¢, including ¢ = 0.

As a general rule for choosing the number of terms in the polynomial and
the number of points we would suggest using a second order polynomial, leav-
ing out measurements during the first minutes or one tenth of the apparent
half life, whichever is the smaller, and using six to ten points chosen from times
less than one fourth half life in fitting the polynomial.

After this brief introduction, which certainly does not exhaust the possi-
bilities of numerical methods in kinetics, we shall show how the formulae men-
tioned above are derived.

2. The purpose of smoothing is to eliminate random errors in the experi-
mental values. A large number of methods to achieve this has been proposed,
but the only method which seems to have some theoretical foundation is the
fitting of a function to the data, using the method of least squares, and then
replacing the measured values by the corresponding values of the function.
If one knows in advance what the functional relationship between the measured
values should be, this is a perfectly straight-forward operation, but
unfortunately also in most cases quite uninteresting. Smoothing primarily
becomes important when the proper functional relationship is not known. For
these cases one must expect that the final interpretation of the data to some
extent depends on the functional relationship chosen; therefore, in order to
obtain a consistent procedure one should always use the same functions. The
simplest functions to use are polynomials, and in order to obtain a smoothing,
the degree of the polynomial should be considerably lower than the number

of points.
Let the measured experimental points be y,, ¥, ¥s, - - -, ¥, and the corre-
sponding values of a parameter be z,, x,, 2, . . ., &,. As usual we shall assume

that the values of the parameter are known with a vanishingly small error,
and consequently we find the smoothed out values by minimizing

8 = -] )

in which gx)=ay+ax+ ...+ aux, is an m’th degree polynomial
(m << m). Once the polynomial §(z) is known, it is a simple matter to calculate
the improved values of §; (j = 0, 1, . . ., ») as well as the derivatives in these
oints.

P Instead of determining the polynomial #(x) by setting the derivatives of
S with respect to a; (j = 0, 1, . . ., m) equal to zero we use the method of ortho-
gonal polynomials, which entails far less work 2. The only restriction this
method imposes on the values to use is that they have to be equally spaced
in z. By putting m = 3 and n = 4, i.e. smoothing five points by a third degree
polynomial, we obtain
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The square array of numbers gives the coefficients, for instance

_ 1
Yo = 7—0(69 Yo + 4y, — 6y, + 4y3—Yy,)

By putting m = 3 and n = 6, i.e. increasing the number of experimental
points to seven while keeping the degree of the polynomial constant, we obtain

) Yo Y1
—o=1_2 ( 39 8
o 1
N91=3 ( 8 19
_ 1
yz-—:ﬁ (— ¢4 16
_ 1
3/3—?45 (— 4 6
- 1
Ya= 55 (1 —4
- 1
Y5 =5 ( 4 —7
Jo = & (= 2 4
ye—ﬁ -

Y2 Ys
— 4 — 4
16 6
19 12
12 14
2 12

— 4 6
1 — 4

Ya Ys Ye
1 4 — 2)

— 4 — 7 4)
2 — 4 1)
12 6 — 4)
19 16 — 4)
16 19 8)

— 4 8 39)

Differentiation of the approximating polynomial leads to the following
values for §’, in which h denotes the distance between the equally spaced

values of z.

From the third degree polynomial through five points:

Yo
gy = 125
yo—m (—
.1
y1—m (— 19

Y1

Ya
136 48
1 12

Ys Ys
— 88 29)
13 — 5)
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, 1

o, 1
g L _ _
U= g (—29 88 — 48 —136  125)

From the third degree polynomial through seven points:
Yo Y1 Y Ys Ya Ys Ye

G = gy (—267 122 185 72 — 71 —122 7))
= gggp (<122 1T 62 48 10 — 17 9
Gi=gey (— 29 — 46 — 19 24 55 46 — 31)
G = gegr (22 — 67 — 58 58 67 — 22)
G =ggm ( 31 — 46 — 55 — 20 19 46 2)
G=gger (— 2 1T — 10 —48 — 62 — 17 122)
G =g (— 7T 122 7T — 72 185 —122  257)

When experiments are planned, where it would be advantageous to use
these or similar formulae for smoothing or differentiation, the measurements
should be arranged so that the procedure becomes as simple as possible.

When for instance equipment is available for recording any number of
values at equal time intervals, it is a sound idea to record seven equally spaced
points around each value of the parameter for which a smoothed out value
is required.

t

3. The integral I(t) = e # / p(t)erdt should under no circumstances be
0

calculated by simple quadrature. For not too large values of 4 the differential
eqn. (2) should rather be solved numerically. In order to obtain the initial
values of I we have found it expedient for small values of ¢ to approximate
the smoothed out corrected values of ¢ by a polynomial

= ¢, + @ut> + ¢5t> + . .. From this and the initial condition I(0) = 0, I(t)

¢
can be expressed in terms of the integrals =4 f t"er'dt, which most conveniently
0

are obtained directly from the algebraic expression for the integrals, viz.
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After the first few points of I(t) have been obtained, the solution is continued
by using, for instance, Milne’s method of solving differential equations nume-
rically 5.

If 2 is large, this method becomes less accurate than if 4 is small, but on
the other hand we see that for this case the value of I(t) can only depend
strongly on the behaviour of ¢ at times a little smaller than ¢.

This is particularly clear when we write the integral as

I(t) = [p@)et-odr= [p(t—a)e-tda (6)
/ /

We see that I is the cumulative effect of ¢ except for an exponential damp-
ing factor. When this damping factor becomes important for large 4, only the
region near x = 0 contributes. It should therefore be possible to use an expan-
sion of the integral in differences of ¢ around ¢.

By repeated partial integration we obtain

[4
AL(t) = de ¥ f peMdt

0
o0 Q0

= > (=)D p(t)—e* (—1)"D"(0) (7)
n=0 n=0

where D is the operator d/d¢. When 4 is a large number, A¢ is large compared

with unity even for small values of t; then the last sum can be neglected, and
we are left with the first sum which symbolically can be written

< 1
Z(—l)*"D"‘P(t) = T+ A o(t) (8)
n=0

The relations between D, the difference operator 4 defined by
Ap(t) = o(t + h)—op(t), and the shift operator E defined by E¢(t) = o(t + k)
are E—1 = 4 and E = exp(hD). Therefore, proceeding purely formally we
obtain

Al 1

= Tr g x4’
= [1—(4h)4 + ¥(2 + Ah)(AR)2 4
—1(3 + 3Ah + AZRR)(AR)3A + .. .Jp 9)
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where the series has been obtained by a Taylor expansion of the expression
on the left hand side. To verify this expression in general would be quite com-
plicated, but, as done for similar cases by Hartree,® it can be verified when
¢ is equal to a polynomial or an exponential or combinations of these functions,
and thereby for any function which can be approximated by such functions.

Using this expression for I, which is only valid when the second term in
eqn. (7) vanishes, I can be directly found from a table of differences of the
measured ¢-values.

4. The main justification for the present note is that the methods developed
have been put to practical use in the accompanying paper. Since the use of
these methods is not limited to the specific example discussed there, it was
thought desirable to record them separately. The major conclusion of this
work is that numerical differentiation on experimental data can be performed
with reasonable accuracy, provided a least squares method is used rather than
the customary five point formulae recommended in many textbooks ?. With
the use of numerical differentiation, and more specifically solutions of kinetic
integrals in terms of differences, the treatment of kinetic data becomes consi-
derably more flexible, and this, for example, allows the calculation of rate
constants by the comparison of experimental results with the rate expression
rather than by comparison with the chronomal (the integrated rate expression).
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