with the modification that one activated acetate unit initiates the condensation of seven malonate units to form the anthraquinone in an over-all reaction.

- Gatenbeck, S. Acta Chem. Scand. 12 (1958) 1211; 14 (1960) 296.
- 2. Tatum, E. L. Ann. Rev. Biochem. 13 (1944) 667.
- Ehrensvärd, G. and Gatenbeck, S. Main Lectures, 17th Intern. Congr. Pure and Applied Chem. II (1960) 99.
- Bu'Lock, J. D. and Smalley, H. M. Proc. Chem. Soc. 1961 209. Birch, A. J., Cassera, A. and Rickards, R. W. Chem. and Ind. London 1961 792.
- 5. Mosbach, K. Naturwiss. 48 (1961) 525.
- Gatenbeck, S. Biochem. Biophys. Research Communs. 6 (1961/62) 422.
- Shibata, S. and İkekawa, T. Chem. and Ind. London 1962 360.
- Gatenbeck, S. Acta Chem. Scand. 12 (1958) 1985.

Received May 2, 1962.

An Attempt to Evaluate a Proton Activity Function from the $H_{\mathbb{R}}$ -Function

ERIK HÖGFELDT

Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm 70, Sweden

Recently a method was developed for the evalution of ion activity functions with the aid of the Hammett acidity function, H_0^{-1} . It was found by Wyatt ², that H_0 , i.e. the proton activity function, is a unique function of the water activity in several strong acids. It was now of interest to learn if other acidity functions give analogous results. The most intensively studied function besides H_0 is H_R defined by the reaction:

$$\begin{array}{ll} {\rm ROH} + {\rm H}^+ \rightleftharpoons {\rm R}^+ + {\rm H}_2{\rm O} & (1) \\ H_{\rm R} = -{\rm p}K_1 - \log([{\rm R}^+]/[{\rm ROH}]) = \\ -\log(y_{\rm ROH}/y_{\rm R} +) a_{\rm H} + \log a_{\rm H_2O} & (2) \end{array}$$

where K_1 is the thermodynamic equilibrium constant of reaction (1) and $y_{\rm ROH}$ and $y_{\rm R}+$ are the activity coefficients of ROH and R⁺. ROH is an alcohol of the

triphenylcarbinol type and R+ the corresponding substituted triphenylmethyl cation. For the sake of simplicity of notation we define:

$$y_{\text{ROH}}/y_{\text{R}} + = \varphi_{\text{R}} \tag{3}$$

From (2) and (3):

$$\log \varphi_{\mathbf{R}} \cdot a_{\mathbf{H}+} = -H_{\mathbf{R}} + \log a_{\mathbf{H},\mathbf{O}} \tag{4}$$

If $\varphi_R a_H + \text{can}$ be used as a measure of the proton activity it should be a unique function of the water activity as found for $\varphi_0 a_H + \text{where } \varphi_0$ is defined by:

$$\varphi_{\mathbf{o}} = y_{\mathbf{B}}/y_{\mathbf{BH}} + \tag{5}$$

i.e. the ratio of the activity coefficients of the base and acid forms of the indicators used in the evaluation of $H_{\rm o}$. According to definition:

$$\log \varphi_0 a_{\rm H} + = -H_0 \tag{6}$$

(In preceding papers ',3 φ_0 has been denoted by φ . By calling it φ_0 the relation to H_0 is indicated in the same manner as with φ_R and H_R). The indicators used in the evaluation of H_0 are mostly substituted anilines.

 $H_{\rm R}$ has recently been measured in the systems $\rm H_2SO_4-H_2O$, $\rm HClO_4-H_2O$ and $\rm HNO_3-H_2O$ by Deno and coworkers 4,5 .

Fig. 1. $\log \varphi_{\mathbf{R}} a_{\mathbf{H}^+}$ plotted against $\log a_{\mathbf{H_2O}}$ for the three systems:

$$\begin{array}{c} O \quad HClO_4 - H_2O \\ \square \quad H_2SO_4 - H_2O \\ \bullet \quad HNO_3 - H_2O \end{array}$$

Acta Chem. Scand. 16 (1962) No. 4

Table 1. $\log \varphi_R \varphi_0^{-1}$ in the system $H_2 SO_4 - H_2O$.

$[\mathrm{H_2SO_4}] \ \mathrm{M}$	$\log arphi_{ m R} arphi_{ m o}^{-1}$
10.0	3.99
10.5	4.19
11.0	4.35
11.5	4.53
12.0	4.62
12.5	4.70
13.0	4.78
13.5	4.81
14.0	4.85
14.5	4.89
15.0	4.92
15.5	4.92
16.0	4.98
16.5	4.88
17.0	4.85
17.5	4.74
18.0	4.77
18.1	4.78
18.2	4.86
18.3	4.82

Using these data and the water and acid activities discussed in Ref 1, the function $\varphi_{\mathbf{R}}a_{\mathbf{H}}$ + has been computed according to (4). In Fig. 1 log $\varphi_{\mathbf{R}}a_{\mathbf{H}}$ + is plotted against $\log a_{\mathbf{H},\mathbf{0}}$ for the three acids. As seen $\varphi_{\mathbf{R}}a_{\mathbf{H}}$ + is not a unique function of the water activity. This indicates individual variations in φ_R and therefore H_R cannot be used for defining a unique proton activity function. However in concentrated sulfuric acid the situation is more hopeful 6. In Table 1 $\log \varphi_{\rm R} \varphi_{\rm o}^{-1}$ obtained by elimination of $\log a_{\rm H}+$ from (4) and (6) is given from 10.0—18.3 M $\rm H_2SO_4$. In the range 13.0–18.3 M $\rm H_2SO_4$ $\rm \log \varphi_R \varphi_o^{-1}$ is practically constant; the average value is:

$$\log \varphi_{\rm R} \varphi_{\rm o}^{-1} = 4.85 \pm 0.07 \tag{7}$$

This is about the same concentration range where it was found that φ_0 could be regarded as practically constant. In this concentration range the following relation holds between $H_{\mathbf{R}}$ and $H_{\mathbf{o}}$:

$$H_{\rm R} = H_{\rm o} + \log a_{\rm H_{\rm o}} - 4.85$$
 (8)

Any mechanism that correlates with H_R will also correlate with $H_0 + \log a_{H_0}$ in the range 13.0-18.3 M H₂SO₄ and one is as good as the other.

On the other hand for the equilibrium:

$$HNO_2 + H^+ \rightleftharpoons NO^+ + H_2O$$
 (9)

Acta Chem. Scand. 16 (1962) No. 4

 $H_{\mathbf{R}}$ is found to correlate better than $H_{\mathbf{0}}$ + log ano in concentrated perchloric acid solutions 5. This is reasonable in view of the possibility that the activity coefficient ratio y_{HNO}, y_{NO}+-1 may be subject to the same individual variations as $\varphi_{\mathbf{R}}$.

The present state of our knowledge of these systems allows us only to guess the reason for the different behavior of φ_{R} in the three acids. The measurements by Cigén 7-9 on the proton equilibria of various triphenylmethane dyes show that reaction (1) is only one of several possible reactions. It has been found to hold in concentrated sulfuric acid for the $H_{\mathbf{R}}$ indicators but in dilute aqueous solutions some of the other reactions found by Cigén might interfere.

Recently Deno et al. 10 have proposed that $H_{\mathbf{R}}'$ defined by

$$H_{R}' = H_{R} - \log a_{H_{1}O} = -\log \varphi_{R} a_{H+}$$
 (10)

is a better measure of the proton activity than H_0 , because the large triphenyl cations are likely to be practically unhydrated and behave more ideally than the substituted anilines used in the evaluation of H_0 . The finding in this paper does not support such a view.

Acknowledgements. This work has received financial support from the Swedish Atomic Energy Research Council, which is gratefully acknowledged. Dr Derek Lewis corrected the English text.

- 1. Högfeldt, E. Acta Chem. Scand. 14 (1960) 1627.
- 2. Wyatt, P. A. H. Discussions Faraday Soc. 24 (1957) 162.
- 3. Högfeldt, E. J. Inorg. & Nuclear Chem. 17 (1961) 302.
- 4. Deno, N. C., Jaruzelski, J. J. and Schries-
- heim, A. J. Am. Chem. Soc. 77 (1955) 3044. 5. Deno, N. C., Berkheimer, H. E., Evans, W. L. and Peterson, H. J. Ibid. 81 (1959) 2344.
- 6. Paul, M. A. and Long, F. A. Chem. Revs. 57 (1957), pp. 36-39 and references.
- 7. Cigén, R. Acta Chem Scand 12 (1958) 1456.
- 8. Cigén, R. Ibid. 13 (1959) 1113.
- 9. Cigén, R. Ibid. 14 (1960) 979.
- 10. Deno, N. C. and Spink, C. H. J. Am. Chem. Soc. In print.

Received May 11, 1962.