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On Equilibria in Systems with Polynuclear

Complex Formation

V. Some Useful Differential Expressions
LARS GUNNAR SILLEN

Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm 70, Sweden

A general method is indicated for deriving the relationships that
hold between the free and total concentrations of the reagents in an
equilibrium mixture, regardless of the reactions taking place in it.
Equations are given for calculating, from measurements (4, B, b)
or (4, B, a), the average p and g for complexes ApB; formed by two
reagents A and B. These equations have already been used repeatedly
in this laboratory.

The appearance of a precipitate of constant or variable ratio
A/B = Zg can be detected, and its composition determined, from
diagrams A(B),. The equations derived for a solution hold also for
an equilibrium mixture of solution and precipitate.

The extension to cases with several reagents, and to distribution
equilibria with two phases are indicated.

Since the first papers in this series appeared 1,2 some experience has accu-
mulated in this laboratory how to study equilibria of polynuclear com-
plexes experimentally, and how to treat the experimental data. We have found
it advisable to apply as many independent experimental and mathematical-
graphical methods as possible to reach our primary aim: to find the formulas
of the predominant complexes and the equilibrium constants for their
formation.

One of our methods is based on equations (19,21,22) below and allows one
to calculate the average composition of the complexes, without any previous
assumption except that the law of mass action is obeyed in its simple form
(activity coefficients held constant by ionic medium).

This method was derived by the present author many years ago and has
been applied, among other things, to equilibria of polyborate 2, and polyvana-
date 4 ions. In these cases as in many others, the method has given valuable
hints for the following treatment.

A general proof for the equations used — which can also be applied for
deriving a number of other relationships — was given % in my lectures at MIT
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in the spring of 1957. The equations are founded on the simple law of mass
action, there is nothing difficult or unusual about them, and equations related
to some of them have been given earlier for instance by Hedstrém ¢, Byé?
and Lefebvre 8.

The latter two workers, in the opinion of the present writer, may not use the most
convenient variables and symbolism for treating these systems. The differences in our
conclusions on specific systems may partly reflect a difference in the accuracy of our
data. The French workers, besides the data, sometimes also use their chemical intuition
for concluding on the formulas of the complexes.

It was hoped that it might help some chemists if a rather general approach
were given, which could be applied to other situations as well. In the following,
the main stress will be on the principles and it will in general be left to the
reader to make those smaller transformations that will simplify the calculations,
such as transforming natural to decadic logarithms.

TWO REAGENTS: ASSUMPTIONS AND DEFINITIONS

A solution contains two reagents, A and B, with the free concentrations
[Al=a;[B] =0 (1)

A and B form one or more complexes, of the general formula A,B,, with
p and ¢ integral. In the equilibria we need not consider any other species than
A, B, and the various A,B,. As usual, a formula like [A,B,] stands for the
total of all species containing pA, ¢B, and in addition an indefinite number
of solvent and medium ions.

For brevity we shall write

[ApBg] = cpq 2
The total concentrations of A and B we shall as usual denote by
A =a + Ipcy; B =b + Zqgcp, (3a, b)

We shall find it useful to introduce the »complexity sum» S, which is the
sum of the concentrations of all complexes:

S = ZCpq (4)

The average composition of the complexes can be described using the aver-
age values p and ¢:
. Zpcp, A—a —  Xqc,y B—b
= ——————= — _—— = — 5 b
p E cpq S ) q Z cpq S ( a ’ )
Eqns. (1) through (5) are symmetrical in A and B. In the definitions (6—8)
below, we shall arbitrarily denote one of the reagents, say B, as the »nucleus»
om»central group» whereas A is the »ligandys. All formulae deduced below will
also be valid if the roles of the two reagents are interchanged.
The average number of A bound per B we shall call Z.

A—a (6)

Z:B

Acta Chem. Scand. 15 (1961) No. 10



POLYNUCLEAR COMPLEXES V 1983

For mononuclear complexes A, B, Z is often denoted by n, which is quite
logical: it is the average value for n. For polynuclear complexes the notation
would have no direct meaning. It is often advantageous to consider the number
of moles of bound A per liter, from (3 a) and (6):

BZ = Zpcy, (6a)

The total molar concentration of species containing B we shall denote
by BR:

BR =b+ Xepg=5b+ 8 (M)
The fraction of B that is present as free B we denote by «,
[B]=b=10qB (8)

Equilibrium conditions

If the system is at equilibrium, and if the activity coefficients can be assum-
ed to be kept constant (for instance by means of an ionic medium), the forma-
tion »constants» fp, of the various complexes are really constant, and we have

Cog = PBpg @ & (9)
Inserting (9) into (3a, 3b, 4, 6a) we find

A — a = BZ = Xpf,a?b%;B — b = Zqf,, aPb? (10a, 10b)
8 = X By atb? 11)

Differentiating (11) with respect to the variables @ and b we easily find
using (10 a) and (10 b)

dS = Zpfpap—9da + Zqfp,atbt~1db = (A—a)dIna + (B—b)dIn b (12)
Differentiating (10a) and (10b), one will obtain similar equations where,
however, the sums Xp?cy;, Zpqcy; and Zq?cy, appear. These equations could

be used for finding more complicated averages.
We shall now center our attention on eqn. (12).

GENERAL METHOD: AUXILIARY EQUATIONS

Perhaps the simplest way of deriving the differential expressions we will
need is by means of total differentials. Let us assume that F is a function of two
independent variables x and ¥, and that its total differential can be expressed by

dF(z,y) = G(z,y) de + H(x,y) dy (13)

where the partial derivatives, @ and H, are functions of # and y. The second
partial derivative of F, (0%°F/0zdy) gives

(.- C2)
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From (13) we may derive the total differential for (F— Hy), which is also
a function of z and ¥:

d(F—Hy) = Qdx — ydH (13a)

In the same way as (14) was derived from (13), we find from (13a)

(5a). =~ (32), o

From (14) and (14a) we find by integration, at constant x:

= const +f(3H) dy = const ——f( ) (15,15a)

x const

In the equilibrium case we are cons1dermg, we have used a and b as inde-
pendent variables, but we could have chosen practically any pair out of
a, b, A, B, Z, R, 8, a, or other convenient variables that can be defined by
means of a, b and sums, X p'gcy(r, s = integer).

We shall not bother about degenerate cases such as systems with no com-
plexes, or with only mononuclear complexes: they are easily and joyfully
recognized, and treated by simpler methods.

If it is desired to calculate one of the variables mentioned above from
measurements of some other variables, one should try to transform (12) or
some analogous differential equation into another expression of the form (13);
to the left should stand a total differential, the unknown quantity searched
for would be in the place of G, and H, x and y would be experimentally known
quantities. Then, one easily derives the desired expressions for partial deriva-
tives (14, 14a) and integrals (15, 15a)

DATA (4, B, a)

Let us assume that we know the total concentrations A and B and can
measure the free concentration a, for instance by emf methods. It is then
practical to eliminate A and use BZ = A—a (6), so that (12) takes the form

dS =BZdIna + (B—b)dInb
which we may transform using (7):

d(BR)=d (S+b) =BZdIlna + BdInb (16)

If we introduce the identity d(BR) = BdR -+ RdB, into (16), divide
through B, and rearrange, we find

dlnb — R)=RdInB—ZdIna (17)
Adding d(Z In a) to both sides of (17) we can alternatively use
dnb — R+ ZIna)=RdIn B+ InadZ (17a)

Both (17) and (17a) are total differentials and analogous to equations (13)
and (13a); in analogy to (14) and (14a) we obtain:

IR 0Z oR dna dloga
Sihbendi) RS S = 1
( dlna )B (6lnB) (OZ) ( dlnB )z (010gB>z (18a, 18)

Acta Chem. Scand. 15 (1961) No. 10




POLYNUCLEAR COMPLEXES V 1985

(In the following, transformations from natural to decadic logarithms will
be left to the reader).

We may, in passing, see from (18) or (18a) that if these expressions are = 0,
thus Z(a) is independent of B, for a single value for a, then R has a maximum
or minimum there. If they are zero for all values for a, then R is independent of
a; which is possible in general only of the system is homonuclear.

Integration, by analogy with (15) and (15a) gives

. 2Z dloga
R = const — f( alnB) dIln @ = const +f(6_13g_3)z dz (19, 19a)

Usually the last formula, (19a), is more convenient for use: the partial
derivative (3 log a/d log B), is obtained directly as the inverted value of the
slope of the curves log B (log a), in »projection maps»®, and in many systems
it tends to be more constant and thus easier to interpolate than (0Z/0 log B),.

Finding the integration constant. In an integration at constant B according
to (19) or (19a), one should start at a point with a known value for R, in order
to obtain the integration constant.

Sometimes the data extend or can easily be extrapolated into a range with
low A where free B predominates, so that b = B, and R = 1. For instance,
the derivative in (19a) often behaves well on extrapolation.

In other cases, the extrapolation is uncertain, or at any rate, accuracy
is gained by integrating only from some point where one can presume that
only two species, say B and ApBg, exist in appreciable amounts. In such case
we have:

B =b + Qcpg; BR = b + cpg ; BZ = Pcpg (20)
By elimination of cpg and b in (20) we obtain
R=1-—ZQ — 1)P (20a)

From Z in the first experimental point that is to be used, R for that point
can be calculated from (20a) and used as the integration constant in (19a).
Usually, P and @ can be deduced from the shape of the experimental curves
at low values for Z, but it is conceivable that in some cases alternative sets
(P, @) might be tried. A similar procedure can be used in any range where only
two species can be presumed to predominate.

Eliminating cpg in (20) we may also deduce.

@ = b/B =1 — ZQP- (20b)

Calculation of b or ay from data (A4, B, a). One may integrate (17) directly
at constant B, add (—In B) to both sides and introduce it into the constant
to the right; after rearranging one obtains

Ingg =Inb—InB=const + R— [ Zdlna (21)
B const

Inserting the expression for R from (19) we get
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In ¢g=Inb — In B = const ——fl:Z‘F(a'fniB):ldln“ (21a)

B const
Eqn. (21a) can also be deduced from (16) via the transformation
d(BlInb—BR)=Inbd B — BZdIna

The integration constant in (21) or (21a) can be obtained either by extra-
polation, or using (20b), if B and ArBy predominate at one limit of integration.

As usual, it depends on the data which of the expressions (21) and (21a)
is the most practical one to use.

Average composition of complexes

Now that R and b (or ¢,) are known, one may calculate the average compo-
sition of the complexes (5a, 5b, 6, 7, 8): ,
BZ BZ Z B—b B—b 1—a,

P="9 TBR=b T FR—a'!T 8 T BE=b E—q

(22a, b)

Thus we can, in principle, determine the average composition of the
complexes from data (4, B, a), without any more assumption about the system
than that the law of mass action holds.

Elimination of mononuclear species. For special cases, a still more straight-
forward calculation may be devised. In several systems (such as for instance
the borates ® and arsenates (III)), the mononuclear species predominate at low
values for B, so that the functions pertaining to mononuclear species, f,(a)
and Z,(a) in (23a, b), are accurately known. The polynuclear complexes are
indicated by deviations at the higher values for B. One might use (19) and (21),
but a higher accuracy may be obtained if one calculates directly B,, the total
concentration of B in the form of mononuclear species. For the mononuclear
species we have:

B, = b (1 + Zfpa*) = bfy(a) (23a)
B\ Z, = b Xpp,af = bdf,(a)/dIn a (23b)
Thus we have

Z,=dnf;/dlna (23c)
din B, =dlnb+dlnf,=dlnb+ Z,dlna (24)

We integrate (24) at constant B and introduce the expression for In b
from (21a):

In B, = const +f[Z1 — Z — (3Z]0 In B)a] dlna (25)

In (25), Z, is known before as a function of a, whereas Z(a, B) differs for
each value of B chosen.
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The integration constant is found in a way analogous to (20 a,b). If we may
assume that at one integration limit, there is only one polynuclear complex
of importance, say ApBy, we have

B = B, 4 Qcpg ; BZ = B, Z, + Pcpg ; B = B(P—QZ) (P—QZ,)™* (26)

If the polynuclear complexes may be neglected at this limit, we have
B, = B.

Having calculated B, from (25), we may then subtract from B, BZ and BR
the contributions from the mononuclear species, which leaves the polynuclear
terms:

Bpoly =B — Bl ;Bpoly Zpoly = BZ — BIZI 5 Bpoly _Rpo]y = BR — B1 (27)

For any experimental point we may then calculate the average composition
of the polynuclear complexes (p and g in eqn. (22) include also the mononuclear
complexes):

_ BZ—BZ, . Zoty BZ—BZ, _ 1  B-B
Zpoty = “f:BT" 5 Ppoly = R;ol; = ’—"B‘R*_’Bl 5 Qpoly == 73;;; = ER‘———BI (28)

In (28), the average composition has been obtained from the data (4, B,
@) without any other assumption than the validity of the law of mass action.

B and Z are obtained from the experiments, Z; is known as a function of a,
and B, calculated by means of (25).

DATA (4, B, b)

From (12) we obtain by easy transformations:

d(Alna+Blnb—8S—a—b)=Inadd +InbdB (29)
d(Adlna—8S —a—b)=Inadd — Bdlnbd (29a)
The two differentials in (29) and (29a) give
dlna [dlnbd dIn(ad-)\  (dln (bB7)
(35~ (a ) (555~ (o )
dlna 0B
(a—m—z;‘)A = (az)b (30a)

Integrals for practical evaluation can be written in several forms, for
instance

a\ 1 [ (9n (b/B))
In (A) = const -+ 4 f( T d BdB (31)
4 const
B
In @ = const _f(OZ)bd Inb (31a)
A const

Eqgns. (30) and (30a) have been derived in other ways by Hedstrém ¢ and
McKay'®.
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DATA (a, B, b)

In some systems, both b and a can be measured, but the difference (4 — a)
is too small for an accurate treatment. Such cases are for instance the hydro-
lysis of metal ions in very acidic solutions, where the metal ion activity can
be measured by means of amalgam electrodes.

By transformation of (16) we obtain using (8)

d(84+b—B)=BZdlna 4+ Bdlnq, (32)
d(S4+b—B—Blne)) = BZdIna — In qyd B (32a)
From the total differentials (32) and (32a) we find
d(BZ)\ _( OB [ d(BZ) d1n q
(ma;),,‘(a In a>a,, ( 3 B ),“ (Olna) (33, 33a)
dB d Ine,
BZ = const —%—f(m»——) d Ine, = const ~f(5_1h—&> d B (34, 34a)
a const a const

Thus we can obtain Z; S and R are obtained directly from (32) which
gives us, for a constant a:

BR—B=S+b—B=const+delnao (35)

a const

Eqns. (34) and (35) can be transformed in various ways for convenience in
calculations. The integration constant can usually be found by starting in a
region where only two species predominate.

SPECIAL EQUATIONS FOR HYDROLYSIS

An important case of polynuclear complex formation is the hydrolysis of
metal cations B. The ligand A may be considered to be OH-, but since one
measures

h = [H*] (36)

it is often practical1® to describe the ligand,} instead, as (—HT). Eqn.
(9) is replaced by

Cpg = [H-pBy] = Bpy h?b7 (37)

Instead of A we must introduce the total analytical excess of H*, H,
and then find, instead of (3a) and (6a)

BZ =h — H = Zpey, (38)
Eqns. (3b) and (4) are valid as before:
B —b=2Xqc, ;S8 =2X2cy (3b, 3c)

Acta Chem. Scand. 15 (1961) No. 10



POLYNUCLEAR COMPLEXES V 1989

Differentiation gives

d8=(B-b)dlnb—(h — H)dInh (39)
Introducing (38) into (39) we find
d(S+b)=BdInb— BZdInh (40)

This is equivalent to eqn. (16). If we have data (H, B, k), to apply eqns.
(18) — (22) we need only replace a by A1, or In @ by —In 4.
In the treatment of data (H, B, b) we can rewrite (39) to the form

dS = (H—h)ydInh + (B—b)dIn b (39a)

which is obviously analogous to (12). In using (31) and corresponding equations,
we need then only replace 4 by H and a by h.

SOLID PHASE PRESENT

An important and challenging task for the future seems to be the study
of micellar systems by the methods of equilibrium analysis. Perhaps the micelles
of various long-chain ions can be described as a sort of solid solution, thus a
separate phase !, perhaps they are better described as very large complexes,
of definite or variable composition. Previous experience 22 has shown that it
is rather hard, without a high accuracy of measurement, to distinguish be-
tween large complexes and a solid phase (infinite complexes).

Let us assume that for each liter of solution, 4, mole A and B, mole B
are present as bound in a solid phase so that

As = BsZs (41)

The ratio Z, may be a constant, but we shall consider the general case
where Z, is a function of a; because of the equilibrium condition, b will also be
a function of a in the presence of a solid phase.

Equations (3a, 3b, 4) are now replaced by

A=a-+4 Zpcpy + Ag; B =0+ Zqcp, + Bs; 8 = Zcpg (42a, b, c)

In the presence of a solid phase, b and Z,, and hence (4 — 4,) and (B — B,)
are functions of @ (cf. 42 a and b). It follows immediately that

(-4,

A plot A(B),, thus of A(B) for a constant a-value, should thus give a straight
line, of slope Z,, when a solid is present; this may be used to find out whether
a new phase is separated. In equilibria with only homonuclear complexes, and
no solid, A(B), is also a straight line since Z is a function of a only. There
should be no difficulty distinguishing this case from that of precipitation.

We shall now apply the Gibbs-Duhem law to the new phase: n,du, +
ngdug = 0. Inserting n, = 4,, ng = B,, y, = const + RT In a, uz = const +
R7T In b, and dividing by R7', we obtain
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A;dlna + B;dInbd = 0, (44)
or using (41) Z,dlnae +dlnb =0 (44a)

Differentiation of (42 ¢) and insertion of (42 a, b), gives:
dS=2p,dlna+ZqcpdInb=(A4 —a—A4)dIna + (B—b —B,)dInb

Inserting (44) we find

dS=(4 —a)dlna + (B—5b)dInb (12)

Thus, eqn. (12) is also valid if a solid phase exists in equilibrium with the
solution, and eqns. (19), (21) efc. can be applied. One must, however, remember
(42 a, b, c) that S is valid for the solution, whereas 4 and B also contain terms
for the solid phase. So, B = (S + b)/B for the mixture of solution and solid
will come out lower than what corresponds to the solution only.

It is true that b is a function of a, so that (a, b) are not independent. The
system is determined instead by, say (a, B) or (Z, B) which are really inde-
pendent.

One might proceed to derive a number of equations, which could be used
to determine the various equilibrium constants involved. However, in a real
case it will not be hard to derive the equations one needs. The most important
task is to obtain reliable experimental data over a broad concentration range.

SEVERAL REAGENTS

The treatment may be extended to equilibria with several reagents. We
shall arbitrarily denote one of them as the »central group» B, whereas the others
are »igandsy A;, A,.. A,... Denoting, as before, total concentrations by
capital letters and free concentrations by lower case letters, we have for any
complex

¢; = [(Ayp, (Aglp,...By] = Basfragh..b? (45)
and, with easily understood symbols

S=2Xc¢ (46)

A, —a, = Zpc; =p,8; B—b=2Xqc, =798 (46a, 46b)

Differentiation of (46) gives, introducing (46a, 46b):

dS =2 (4, —a,)dIna, + (B—05)dIlnb (47)
ordln S=2pdlna, +9dInbd (48)

dS+b+ Za, —X4,Ina,) = Bdlnb — X In a,dA4, (49)

Keeping all 4, constant except 4’ we find from (49)
d(S -+ b+ Za, — X4, Ina, + A’ Ina') = BdInb 4 A'dIn a’ (49a)

Eqgns. (47) — (49) can be used as a basis for deriving useful relationships
between the variables, if satisfactory data are available.
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In differentiating eqn. (46 b), weighed averages P, and'q occur (Rossottil3),
defined by

Bp, = Zp,q¢;; BT = b + X ¢ (508, 50b)
Differentiating (46 b) we find
dB=BdlnB=ZXXpgcdlna, + (b 4+ Zq%;,)dInb
or, after transformation using (50a, 50b)
dinB=2ZXpdlna, +gdlnb (51)

DISTRIBUTION EQUILIBRIA

Let us assume that there are two solution phases at equilibrium, say one
aqueous (no subscript) and one organic (subscript *',”’). There will then be two
sets of equations, one for each phase. For instance, the counterpart to (51) is
(51,):

dln B, = >p,dIna,, + ¢.dIn b, (51,)

The equilibrium between the phases requires that for each reagent the
distribution ratio, a,/a,, or b/b,, remains constant so that

dlna,, =dlna,;dInb,=dInb (52)
The distribution ratio for B, @, is defined by
B, = BQ,thusdln B,=dIn @ +dIn B (53)

Eliminating d In b and d In B, from (51), (51,) and (53), using (52),
we find

dn Q=77 —7)dn B+ Z ¢(Prdo —pgd ") d In a, (54)
In special cases we may set
a, = A, (55)

for instance when B is present in small or tracer amounts. From (54) and (55)
we then find

dIn @ _~f1_1\ (dInQ o~ VT
(Tln‘ﬁ>m 4 ‘-’°<3‘ :); (m—Ai)B,aﬂm A,,"q"(*f g /o)

These equations are essentially the same as those given by Rossotti 3.
They can be simplified if , andq can be treated as constant, or even as equal.

We shall not further develop the cases of many ligands, or distribution
equilibria. It is not hard to deduce a number of differential and integral ex-
pressions. The real difficulty is to get data over a broad range of concentra-
tions for each reagent, data that are sufficiently reliable to allow valid con-
clusions to be drawn from such calculations.
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