The Crystal Structure of β-Si₃N₄

O. BORGEN and H. M. SEIP

Institutt for teoretisk kjemi, Norges tekniske høgskole, Trondheim, Norway

The crystal structure of β -Si₃N₄ is known from studies by Hardie and Jack ¹, and Popper and Ruddlesden ² with X-ray data obtained from powder photographs.

Although crystals of β -Si₃N₄ have been grown² by heating silicon in an ammonia atmosphere at 1500°C for three days, no single crystal structure investigation has been published.

A sample of crystals formed spontaneously on a ferrosilicon alloy in air at room temperature 3 has been given us by Prof. K. Grjotheim. The sample contains both a- and β -Si $_3$ N $_4$.

The crystal structure of β -Si₃N₄ has been reinvestigated by us, using X-ray intensities measured photometrically from integrated Weissenberg films and corrected in the usual way. Needle-formed crystals of diameter about 30 μ were used for this investigation.

We have reaffirmed the space group $P6_3/m$ and unit cell parameters, a = 7.607 Å, c = 2.911 Å, found by the earlier investigators ^{1,2}.

As the z-coordinates of all atoms are determined by the space group, only the hk0-reflections have been utilized in this investigation.

Three cycles of least-squares refinement of the atomic coordinates were made, giving the final values for atoms in different special positions,

N in (c)
$$x = 1/2$$
 $y = 2/3$ $z = 1/4$
N in (h) $x = 0.321$ $y = 0.025$ $z = 1/4$
Si in (h) $x = 0.174$ $y = -0.234$ $z = 1/4$

The coordinates of N in (h) are somewhat different from those of Hardie and Jack ¹.

N in (h)
$$x = 0.333$$
 $y = 0.033$ $z = 1/4$
Si in (h) $x = 0.172$ $y = -0.231$ $z = 1/4$

Fig. 1. Electron density projection of β -Si₃N₄ on (001).

The final reliability factor was $R = \Sigma |\Delta F| / \Sigma |F_0| = 0.109$.

An electron density projection on (001), calculated before the least-squares refinement, is shown in Fig. 1.

The interatomic distances within the distorted SiN₄ tetrahedron (see Fig. 1) are given below.

The standard deviations of the above distances are estimated to be less than 0.015 Å.

- Hardie, D. and Jack, K. H. Nature 180 (1957) 332.
- Ruddlesden, S. N. and Popper, P. Acta Cryst. 11 (1958) 465.
- Grjotheim, K., Johnson, E. and Krohn, C. Nature 190 (1961) 23.

Received October 13, 1961.