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On the Calculation of Complexity Constants by the Method

of Least Squares *

JAN RYDBERG

University of Stockholm, and Research Institute of National Defense, Stockholm, Sweden

Some requirements for the application of the method of least
squares to equations for complex equilibria are discussed, and a review
is given of what so far has been done. In a number of exaples, the
results of least squares calculations with high-speed digital computors
are compared to results obtained by graphical methods. The applica-
tion of simple statistical tests as the ¥2-and t-tests are also demon-
strated.

In complex chemistry — as in many other scientific fields — one is com-
monly faced with the problem of trying to fit theoretical equations to a
number of experimental points. This fit may be done in a graphical or numeri-
cal manner. If the equations are complicated and the body of experimental
data large, graphical methods seem more attractive and have been used by
far more often in complex chemistry. However, with the increasing availa-
bility of high-speed digital computors, the complex chemist no longer has
any reason to avoid numerical calculations.

The present paper shows how the method of least squares in combination
with electronic computors can be applied to studies of complex equilibria.
The results will be subjected to simple statistical tests and compared to results
obtained graphically.

TYPE OF ERRORS TO BE CONSIDERED

Since the method of least squares considers the errors in the experimental
data, and permits the calculation of standard errors in the constants com-
puted, it is necessary to say a few words about errors in general.

All experiments are subject to errors. Indeed, it may be observed, that it
is impossible to establish the true value of any constant through experiments
alone. However, through careful experiments, it is possible to approach the
true value of the constants to any degree of closeness. This »degree of closeness»
depends on the type of errors involved in the experiments.

* Parts of this paper also appears under the same title and by the same author in Advances
in the Chemistry of Coordination Compounds, Stanley Kirschner (Ed.), The Macmillan Co, New
York 1961.
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1724 JAN RYDBERG

The most familiar type of error is mistakes, which are easily recognised
because they always lie far off the main population of experimental data. In
‘tihe following we shall assume that all mistakes have been eliminated from our

ata.

Accidental errors occur in all experiments, and their cause is in principle
unknown. Their occurrence follows the laws of chance, and they can therefore
be treated by the Mathematical Theory of Error. From the accidental errors
in the experiments, this theory permits the calculation of precision in constants
computed from the data. Various measures of precision are used; in this paper
only the standard error (also called standard deviation or mean square error)
o shall be employed.

When the same system is investigated by various methods, and the results
do not agree, this may either be due to the use of wrong theories, or to pre-
sence of unknown systematic errors. In principle such errors are determinate.

Before experimental data are used for computing constants, corrections
for systematic errors should be applied, whether these corrections are based
on empirical observations or true knowledge of the cause of the error. If such
corrections are not made, e.g. because the presence of systematic errors is not
realized by the investigator, the constants obtained will be much farther away
from the true value than may be indicated by standard deviations given. The
reader may view such results not only with suspicion but also regard them as
being dangerous, because the standard deviations lend a false impression of
exactness to the constants. However, it should be observed and strongly
emphasized, that when errors are given for constants, in whatever field of
science, these errors should be adequately defined. Standard errors, which are
used in this paper, are exactly defined (cf., e.g., Refs.1,2) to be based only on
the accidental errors in the experimental data. Thus the reader who suspects
systematic errors in an investigations should, after considering the accidental
errors causing the standard deviations in the constants, focus his attention
on how the constants themselves have been obtained. The relative value of
standard deviations in such a case will be discussed in connection with the
examples at the end of the paper.

In the following, it will be assumed that all mistakes and systematic errors
have been eliminated from the experimental material, provided this question is
not brought up in a particular discussion.

TYPES OF EQUATIONSEENCOUNTERED IN EQUILIBRIUM STUDIES

The ultimate nature of the problem is to determine the stability constant
Bmnp as defined by
ﬁ T [MmAnBP] (1)
™ MIP[ATBP

for the complex M,,A,B,, where M is the central (metal) atom and A and B
are two different kinds of ligands. Brackets may here indicate activities or
concentrations; in the latter case it is assumed that the ratio of the activity
coefficients of the various species involved in the equilibrium are constant.
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More complicated complexes may be defined (cf., e.g., Refs.*5, but these
are almost entirely of theoretical interest because of the practical difficulties
in investigating such complexes.

The mathematical formulation of the equations as well as methods for cal-
culating the stability constants for complexes of type M A, have been thoroughly
discussed by many authors as, e.g., Bjerrum ¢, Sullivan and Hindman 7, and
Irving and Rossotti 8. In the general equation

N
%’ (Ca—[A]—n - Cy)B,[A]" = 0 (2)
which for reasons given later can be written
N
X (y—bz—a,)p" =0 (3)
0

4 and Cy are the total concentrations of ligand and metal.

Depending on the method of investigation, the symbols y, b and a, can
be given various meanings. Thus, in spectrophotometric investigations where
only the metal species show measureable extinetion, one may put y = &, = mo-
lar extinction coefficient of all metal species in solution (ey = E-Ca-d—1, where
E is measured extinction for cell length d), b = 0 and a,, = e, = molar extinc-
tion coefficient of MA, (e.g., Ref.?). In partition measurements, one may
put y = @y = partition ratio of all metal species between one phase (e.g.
resin or organic solvent) and the aqueous phase, b = 0, and a,, = 4, = parti-
tion constant for MA, (e.g., Ref.1112),

The equations for mized complexes of type MA,B, can be formulated in
many ways, as given, e.g., by Fronsus 13 and Rydberg 3. The primary equations
all contain double sums; a representative example is given by

N
i Ca—ta] o P BATIEY “
NP
O EZ ,, [APBY

where 7, is the average number of ligands A bound per metal atom.

Equations for the formation of polynuclear complexes have been elabora-
ted by many authors, as for type M,A,, e.g., by N. Bjerrum 4, Leden 1* and
Fronaeus %, for type M,A,, e.g., by Bodlinder and Storbeck 6, Brosset 17,
Ahrland 18, Sillén 1 and Hedstrém 2%, for type M,H.A, (complexes between
metals and acid ligands), e.g., by Schwarzenbach 2, for type HM,,A,, (polyan-
ions neutralized by jH¥), e.g., by Rossotti and Rossotti 22 and for the core-and-
link types by Granér 2 and Sillén 23,24, The primary equations all contain double
sums, as for example in

i Ca—[A] 23 nf[M]"[AT" )
Ox [M] + 25 mf,,[M]"[AT

where the summations are to be taken from 1.
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A test of the validity of the models specified by equations (1)— (5) is outside
the scope of the present paper, and it will be assumed that the equations are
basically true for the given cases.

METHODS USED FOR CALCULATION OF COMPLEXITY CONSTANTS

After the experimental data have been collected, a threefold problem is
encountered: (i) it is necessary to get an idea about which complexes are for-
med; (ii) on the basis of this idea, complexity constants are calculated; (iii)
it is necessary to test if the results thus obtained are consistent with the experi-
mental data. The first problem often involves chemical judgement. The second
problem is mathematical in nature, and shall be discussed in this section. The
third problem may also be a problem of judgement; it can be based both on
chemical knowledge and on statistical tests, as will be further discussed in
connection with the examples at the end of this paper.

At present four different approaches to the problem of computing constants
in complexity equations seem to be in use. The methods are (a) the method of
linear plots, (b) the method of curve fitting, (c) the method of averages, and
(d) the method of least squares.

The first two methods are graphical and the last two are numerical. Each
of these methods will be shortly discussed below *. It should, however, be
remembered that whatever method is applied, a graph of the experimental
points should first be made, partly to eliminate mistakes (and perhaps syste-
matic errors) and partly to see if the points in any way can be represented by
a smooth curve.

(@). The method of linear plots. In this method (e.g. Ref.) which by far is
the most common, the equations are transformed so that they are linear in the
variables over a certain range of one of the variables. In this range, the experi-
mental data (variables) can be plotted as straight lines.

Under limiting conditions, the intercept of this line on one of the axes,
or its slope at this point, gives a value, which may be one of the constants
searched for (see, e.g., Leden 15) or a parameter which is a simple function of
this constant (see, e.g., Rydberg 19). It may also be an intermediate variable
obtained under fixed conditions. A number of such intermediate variables
may then be plotted in a similar manner, and the intercept on one of the axes
of the curve through these points may yield the constant or a new intermediate
variable, etc. (see, e.g., Ahrland 2%).

Instead of extrapolations, interpolations may be made; a set of curves
drawn trhough the set of experimental points are cut at certain fixed values
of one of the variables, and the corresponding values of the other variable is
further treated in a graphical or numerical manner (see, e.g., Fronzus °).

From the accidental errors in the experiments, it is possible to calculate
standard errors in the final constants. However, this is rarely done, because it
is so much simpler to get acceptable estimates of these errors from the graphs.
By introducing the final constants in the equation valid for the experiments,
and comparing the graph of this equation with the plot of the experimental

* For a more comprohensive discussion, the reader is referred to the references given,
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data (cf. next paragraph), systematic deviations between theory and experi-
ments are easily revealed.

(b). The method of curve-fitting. In this method 2620, the basic equations
are transformed so that for each variable there is a single relationship between
that particular variable and one parameter, and this relationship is the only
way in which the parameter enters the equation. Curves are then calculated
for given parameter values. A fitting of these curves to the experimental data,
transformed into the same type of equation, will yield the parameter values.
These parameters are related to the constants searched for in a simple manner.

What is said in the foregoing paragraph on accidental errors, is also valid
for the curve-fitting method. This method also easily reveals systematic devia-
tions between theory and experiments.

(¢). The method of averages. The method of averages (e.g. Ref.?) is probably
the shortest and easiest numerical method for finding the constants in an empi-
rical equation, but is limited to equations linear in the unknown constants.*
The method assumes that the best representative curve is that for which the
algebraic sum of the residuals (i.e., the difference between the computed and
measurcd values of the dependent variable) is zero. When there are more
equations (measured points) than unknown parameters, the equations are
grouped together so that only as many equations as unknowns are obtained.
This system of equations is then solved for the parameters in a conventional
manner.

There is no rule for grouping together the equations, and as pointed out by
Scarborough 2, a careless grouping may yield quite erronous results, unless
each group comprises at least 3 to 4 points.

Though this method in its clear-cut form seems to be rarely applied in
complex chemistry, the principle is used for example in Bjerrum’s method &
(cf. also Bloch and McIntyre 3 and many others), when n combinations n([A])
are introduced in equation (2), and the system of equations thus obtained is
solved by determinants.

Properly used, the method of averages does not introduce any systematic
computational errors. On the other hand it does not permit any calculation of
statistical errors in the constants obtained.

(d). The method of least squares. This method is no doubt the most commonly
used in numerical calculations in which the number of measured points exceed
the number of unknown constants. The principle of least squares, which is
founded on the normal probability equation (the ’Gaussian curve’), says
that the best or most probable value of a measured quantity is that value
for which the sum of the weighted squares of the residuals is a minimum. The
application of this principle to curve fitting is extensively treated, e.g., by
Deming 2.

The method is only applicable to equations which are linear or can be redu-
ced to a linear form in the constants. In complex chemistry this is a rather
serious limitation, because it is seen that none of the equations (3)—(5) fullfill
this requirement. The problem of linearity will be discussed separately in next
paragraph.

* See also next paragraph on least squares.
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The method of least squares does not introduce any systematic computa-
tional errors. It gives the best set of constants obtainable from the data accord-
ing to the Theory of Error, and it also permits the calculation of standard errors
of these constants, which make it possible to subject the results to statistical
tests (see, e.g., Fisher ), as will be demonstrated in the examples at the end
of this paper. A requirement for such a test as well as the use of the method of
least squares is — as pointed out earlier — that only accidental errors occur
and that they have a normal statistical distribution.

EQUATIONS SUITABLE FOR LEAST]SQUARESJTREATMENT

The determination of many parameters from a large number of experimental
data with the method of least squares leads to very extensive calculations. It
is therefore understandable that few chemists have used this method until
very recently, when high-speed digital computors have become easily available.
The following summary of what has been done in this field is therefore neces-
sarily meager, though this situation will certainly not last very long.

(a ). Equations linear in the parameters. If in eqn. (3), b = 0 and only one
value of a, is greater than zero, the equation can be rearranged to give

N

2= f c,z” (6)

which is linear in the parameter c,, which is simply related to the constant
f.. This equation represents a number of common cases of investigations on
the complex MA,,.

The method of least squares is straight forward in this case, and it has been
applied by Irving and Rossotti 8 to a number of systems with N = 2, and by
Kivalo and Rastas 3 and McMaster and Schaap 3 to polarographic studies
with N =4. While Irving and Rossotti, and Kivalo and Rastas made their calcula-
tions manually, McMaster and Schaap, as well as the investigators in the follo-
wing references, used high-speed computor calculations. None of these authors
used weighted data. Both Kivalo and Rastas, and McMaster and Schaap used
an approximation technique in the calculations, and the latter authors did not
calculate any standard deviations in their parameters.

Rydberg, Sullivan and Miller 11,38-38 have applied eqn. (2) to potentio-
metric and eqn. (6) to solvent extraction studies, while Zielen *® has applied
eqn. (6) to cation exchange data. In all cases, weighted data were used, and
the computors were programmed to calculate standard deviations in the para-
meters.

(b). Equations non-linear in the parameter; the Gauss transformation to a
linear form. The problem of using the method of least squares for determina-
tion of parameters, which do not enter the equations in a linear way, as is the
case with eqns. (3)—(5), has been discussed, e.g., by Moore and Zeigler 4°.

In order to obtain an equation linear in the unknowns (8,) these are repla-

ced by a guessed or estimated value (,/3\,,) and its deviation (4 f,) from the
N\
“true” value B, (thus B, = B, + 4 B,). The function is then expanded in a
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Taylor’s series, where higher terms of 4 8, are neglected. The new function,
which will take the form

yB) =y (B +-2YE)  4p o OYBD gy )
aﬂl aﬂz

is then solved for 4 g, by the method of least squares. With the 4 g, values
80 obtained, new and better estimates of the constants are made, and these
new constants are introduced into eqn. (7), and the procedure is repeated until
the 4 8,’s are negligible to the standard errors computed for the g,’s; usually
very few iterations are needed 49, This method may be referred to as the Gauss 49
or Newton-Raphson 2 method.

The, method| is based on estimated values of 8,. It seems not to be clear
how good these estimates have to be. Moore and Zeigler report success in cases
where the estimates have been as far off as a factor of 105, and failures in cases
where the estimates have been only 20 9, off the correct value. In most cases,
adequate estimates can probably be obtained from graphical plots.

This principle has (unknowingly?) been used by van Panthaleon van Eck 4
on data n([A]), where all weights have been taken equal to unity. It has also
been used with weighted data in kinetic studies of the reduction of Np(VI) by
Zielen, Sullivan and Hindman 4%, and on spectrophotometric investigations
of the hydrolysis of Pu(IV) by Rabideau and Kline 4.

When no approximate values of §, are known or can easily be determined,
reasonable such values of the parameters may be guessed and tried according
to the Gauss method. Another approach is to use these guessed values, and to
study how the sum 8§ of the squares of the residuals vary with the variation of
one parameter at a time. When the minimum of § (Suw) is found for one para-
meter, this value is retained, and the next parameter is varied until Sp, for
that parameter is found. After S has been minimized for each parameter in turn,
the procedure is started over again, and continued in this manner until § is a
minimum for all of the parameters. Obviously, this technique will not guarantee
that one will reach a true minimum for S. Also, there may be another set of
parameters, which gives an equally small value of 84, However, if the original
estimate of the parameters is not too bad, it seems likely that this method will
yield correct answers.

Another more systematic method for polynuclear complexes has recently
been suggested by Dyrssen, Ingri and Sillén 44, who call the method ’’pit-
mapping”’. In this case estimates of the parameters are obtained through
graphical methods *,

* When mixed or polynuclear complexes are studied, the calculations will be much simplified
if the experiments are carried out so that the system is studied as a function of one of the inde-
pendent variables, while the other is kept constant. This situation is wellknown to all investiga-
tors in this particular field.
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It was earlier indicated that eqn. (3) could be used for spectrophotometric
and partition studies in which case it can be written (b = 0)

E(eu—eBIAT = 0 (82)
{)."V(QM — A)BJAT = 0 (8b)

In these equations ey, @u and [A] are measured, while &,, 4, and B, are the
unknown parameters, though usually one value of ¢, and 4, is known: q.e.
& for M+ or ey for MAy in spectrophotometric investigations, 4, for M*+
in cation exchange studies, or 4, for the uncharged complex MA, in solvent
extraction work. By guessing reasonable values for ¢, and 4, the method of
least squares can be used for calculation of those 8,’s which gives a minimum
for 8. This method, which has been used in one of the examples below, is obvi-
ously a variation of the principle described above.

SOME RESULTS OF LEAST SQUARES CALCULATIONS ON COMPLEXITY
SYSTEMS

In this part, the application of the method of least squares to a number of
complexity systems will be demonstrated and the discrepancies between the
results and those obtained with graphical methods will be discussed. Since
the method of least squares provide standard errors to the computed constants,
some statistical tests have been applied and their merits analysed. It is believed
that the viewpoints which are brought up in this connection are rather general
in nature and shall indicate to the chemists not familiar to this field both what
can be gained and what the limitations of the methods are.

(a). The Ni(II )-NH, system; a potentiometric investigation. The experi-
mental data of Bjerrum ¢ were directly introduced into eqn. (2) which was then
solved for B, by the method of least squares 37 using an IBM 704 computor.
With the program used #*%, one run on the computor takes about one minute.
In practice, it may take a much larger time to find the g,, because if proper
data are not used, it may be necessary to make several runs on the computor.
The reason for this is that all errors are assumed to belong to the experimental

Table 1. The Ni(II)-NH, system, 2 M NH,NO, at 30°C.

Step-wise

constant * Bjerrum Least squares

Gross constant *| Bjerrum Least squares

By x 1072 6.29  6.094 1+ 0.048 log k, 2.795 2.785 + 0.0034
By x 1078 1.084  1.111 &+ 0.020 log k, 2.24  2.262 + 0.0085
Bs x 107¢ 5.82 5.377 + 0.173 log ks, 1.73  1.686 + 0.016
By x 1077 9.00  9.254 & 0.414 log k, 1.19  1.249 & 0.023
B; x 108 5.06 5.202 + 0.262 log kg 0.75 0.737 4+ 0.029
Bs x 1078 5.43 5.514 + 0.396 log kg 0.03 0.026 + 0.038
* »6» = Hkn
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determination of [A], and the present program cannot handle cases where the
difference Cy—[A]—nCy is about the same or smaller than the error in [A].
If one wants to save computor time, such combinations have to be eliminated
before running the program. In the Ni—NH, case, 3 points of 14 had to be
excluded. Table 1 gives the results then obtained, and also the results of the
semi-graphical ligand number method 8. It is seen that the agreement is excel-
lent.

The X*-test 33 may be applied to the data. Bjerrum estimates ’the limit of
experimental error” in the e.m.f. measurements to 0.2—0.5 mV (p. 124)8,
which here is interpreted to a standard error of 4 (0.1—0.25) mV. A standard
error of 4 0.1 mV corresponds to a 0.54 9, error in [A], ¢.e. oja; = = 0.0054[A].
Using this error of internal consistency 32, a X¥2-value is calculated (this calcula-
tion is incorporated in the computor program) to 4.25. Since the number of
degrees of freedom here is 5 (11 points minus 6 parameters), the ¥2-test shows
a high degree of consistency between the experimental points and the curve
calculated with the obtained constants. This consistency, found even for the
smallest possible error assumed by Bjerrum, is a strong support for the basic

hypothetis, i.e. that all stepwise complexes from Ni2t to Ni(NH,);" exist.
For larger errors in the experimental data, the X2 value decreases and the pro-
bability for a good fit between the calculated function and the experimental
points further increases.

The same point may be illuminated by quoting Deming 32 *’The unbiased
estimate of 2 made by external consistency is found by calculating what value
of o forces %2 to take its mean value G’’, where @ is the number of degrees of
freedom, which in this case, is the number of experimental points minus the
number of parameters minus one. Using this criterium, one arrives at an error
of 0.498 %, in [A], which obviously very closely corresponds to an error of
+ 0.1 mV in the e.m.f. measurements.

These results indicate that the experiments perhaps have been even more
accurate than Bjerrum assumed. Even though the result of the X2-test here
is striking, it must be realized that it probably is a rather favorable case.
Some caution is also necessary, considering the small number of degrees of
freedom in the system 32.

(b). The Th(IV ), U(IV ), Pu(1V ) acetylacetone system; a solvent extrac-
tton wnvestigation. This example may well be called ”The case of the missing
constants’ or — as it has turned out — “’The case of constant misunderstand-
ings’’, as shall be explained below.

The least squares calculations of stability constants for Th(IV), U(IV) and
Pu(IV) acetylacetone complexes using eqn. (6) and the IBM 704 computor
has earlier been published *® and the results are collected in Table 2. In this
case a program *%® slightly different from the previous one, was used. All
errors are assumed to belong to the measured distribution ratio  of the metal
between the organic solvent and the aqueous phase. The speed of the computa-
tions are about the same as for the previous program. No points have to be
excluded. _

In the U(IV) case the agreement between the constants obtained by the
two-parameter method and the least squares method is quite good. The number
of experimental points in this case is 46 and the residuals show a normal distri-
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Table 2. The Th(IV), U(IV) and Pu(IV) acetylacetone systems; 25°C.

Case System log k, log k, log k, log k, log 4,
1 U(IV), par.e) | 9.05 4 0.16 7.97 4 0.17 6.90 + 0.18 5.84 4 0.11 3.62 4 0.05
Least squares | 9.02 4+ 0.29 8.26 4 0.15 6.52 4 0.09 5.98 + 0.09 3.64 + 0.025
2 Pu(IV), Ligb) | 10.0 + 1 91 +02 85 +£03 59 +£03 2504 0.2
Least squares — 17,77 4 0.12 5.91 4+ 0.09 2.54 + 0.07
3 Th(IV), Lim.c)| (7.82 & 0.16) (7.7340.09) 6.27 & 0.05 5.00 4+ 0.04 2.52 4 0.04
Least squares 156.57 + 0.08 6.15 + 0.04 5.14 4 0.07 2.48 1,0.06
4 Th(IV) Lim.4) } 8.00 :l: 0.17 7 48 + 0 6.00 + 0.11 5.30 & 0.05 2.55 + 0.03
Least squares 3+ 0 5.83 4 0.39 5.35 + 0.42 2.53 4- 0.20
B0 DHAL e MA) =a, IMA] e [MA]
1 e, [MIAY = [MA][AT ™ [MA,J[AT ™ = a, [MA,JIAT’
1_1 [MA.]m k=2 [MA,] b % DAY
‘“ ™A Jq F T a, T [MI[AT® ™7 = a, = [MAJ[AT
a) Calculated by 2-parameter method: 0.1 M NaClO,
b) » » ligand number method: 0.1 M NaClO,
c) » » limiting value method: 0.01 M NaClO, - Benzene solvent,.
d) » » » » » 0.1 M NaClO, * Chloroform solvent.

bution around the curve. Thus it may be concluded, that the two-parameter
method and the least squares method of calculation applied to good solvent
extraction data yields the same resvlts, provided the basic assumptions for the
two-parameter method are valid 28,

Not so good agreement is found in the Pu(IV) case, which comprises 24
points. From a consideration of replicate experiments, a standard error of 20 %
was assigned to the measured distribution ratio. The least squares calculations
yielded the results in Table 3. The negative values of the parameters a, and
ag* indicate either a systematic deviation from the assumed equation for the
system. or that negative concentrations of the complexes are present. Since
the standard errors are very large and negative concentrations of complexes
are assumed not to exist, it seems reasonable to eliminate these parameters
from the calculations.

This procedure may cause some concern among chemists, who may conclude
that the elimination of a3 and a, means that the corresponding chemical species
(Putt for a,, and PuAj’ for a,; see Table 2) do not exist. The author feels
however, that constants should not be given for equilibria involving species
which one has not been able to identify **. It might well be possible to identify
the missing species and to determine equilibrium constants for their formation

* The parameters a,, are defined in Table 2.
** In this case, the only method of “identification” is through a fit between the experimental
data and the equations involving the particular species.
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Table 3. Primary parameters obtained for the Pu(IV) case.

a, X 10% a; X 10 a, X 1017 a, X 10° a, x 103 v @G
—17 4+ 10 1.9 4 0.8 —0.046 + 0.53 3.3+ 0.6 294 0.4 17.3 19
—_ 0.61 £+ 0.15 — 36+ 05 29405 224 21

with a better set of experimental data. In the present experimental material,

Putt and PuA3* cannot be identified ([Pu**] and [PuA3*] cannot be deter-
mined) with any reasonable degree of accuracy, though the existence of

PuA3*™ seems highly probable from a chemical point of view, and Put+ is
known to exist. The ¥2-values indicate about equally good fits between the

experimental data and the calculated curve, either Putt and PuA3* are
assumed to be present or not. Thus the indeterminate influence of these species
on the system is obvious.

A similar state of affairs exists for the Th(IV) systems in Table 2. In these
systems, one expects to find the same species, even though the systems have
been investigated by slightly different methods. With the graphical methods,
formation constants were obtained for all stepwise complexes. Neverthelsess
the least squares calculations on case 3 came out with ¢, = (—1.3 4 1.3) 10-2
and on case 4 with @y = (—17 4 20) 1030, The parameters a, and a, are here
eliminated simply because they cannot statistically be proven to differ from
zero; this operation caused practically no change in the ¥*-values. The elimina-

tion of a, in case 3 and a, in case 4 does not mean that ThA} and Thé+
respectively, do not exist. In fact, the species missing in one of the systems is
”found” in the other of the systems.

Tests were also carried out assuming that complexes higher than MA,
were formed, ¢.e. MA; and MA,, but the standard deviations of 85 and S, far
exceeded the constants. In fact, in no case where the least squares method
has been tried by the author, has it been possible to identify more complexes
than assumed by the original investigators.

It may thus be concluded that the method of least squares does not give
any better results than can be justified by the experimental data. An advantage
of this fact is that it indicates in which experimental region the data are too
uncertain (too scattered, too few, etc.), whatever consequence this may have
on the investigator.

(c). The VO**—F system; a potentiometric investigation. To this system 48
eqn. (2) is applicable in the same manner as for the Ni—NH, system described
earlier. In Fig. 1, the original authors have plotted 7#([A]). Since the points
are obtained from 5 different sets of experiments, and the curve obtained
with the four constants f,, B, fs and B, seems to} well fit all the 5 sets of
points, a statistical ¢-test 33 seems applicable.

A general look at Table 4 reveals 3 things: (i) of the 5 sets of experiments
some rather high values of X2/@ are obtained; (ii) the B,-values computed by
the method of least squares for the various sets of experiments do not all agree
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Fig. 1. The complex formation function of the vanadyl fluoride system. The points refer
to titrations with different values of Cp and Cpy, as indicated by the scheme given in the
figure. The curve is calculated from the constants f, finally found.

within their errors; (iii) Ahrland and Noréns g,-values agree approximately
well with the mean values calculated by the method of least squares. These
points shall be discussed in turn.

If the error of external consistency is found by calculating what value
forces X2/G' = 1.0, one finds that the error should be around 2 9, in [A], with
exception for set 4, where the error must be assumed to be about 5 9,. This
agrees rather well with the 4+ 0.2 mV error estimated for the e.m.f.
measurements.

Table 4. The VO*+ —F-system. The errors given are mean square errors at the 95 %
confidence limit (2 times standard deviation),

Set [[H+]1x10%Cy x10%) B, x 107* g, x 1078 B, x 1077 B, x 1077 ¥ Q
1 25 25 2.29 4 0.03 4.84 4 0.07 1.75 4+ 0.06 8.97 + 0.64| 0.64 4
2 50 25 2,16 + 0.06 4,14 + 0.16 1.31 4 0.14 6.14 +- 1.31} 530 5
3 50 50 2.13 + 0.10 3.67 & 0.28 1.15 + 0.20 3.12 + 1.73/41.4 6
4 100 25 1.97 4 0.20 3.49 4 0.60 1.53 + 0.59 9.65 4+ 9.23/198 7
5 100 50 1.53 4+ 0.03 2.57 4+ 0.11 0.93 + 0.07 3.32 4+ 0.90| 20.6 10

Mean values of least
squares calculations 2,02+ 0.08 3.74 + 0.24 1.34 4+ 0.21 6.2 + 2.8

Values by Ahrland and
Norén 20 +£01 29 +03 14 402 3.0

Acta Chem.
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A t-test was carried out on the g,-values (r = 1, 2, 3, 4) to see if there were
any significant deviations between them. The test was based on the assump-
tion (1) that in each experimental set, the points have a normal statistical distri-
bution, and (2) that all data were of the same relative weights. A constant
percentage error P in [A] was assumed; thus 1/W, = (0.01 P[A],)%

If these assumptions are not too incorrect, the t-test indicates significant diffe-
rences between the f,-values. Thus for 1098, = 4.84 4 0.07 (set 1) and
2.57 4 0.11 (set 5), the test shows that the probability is <1 9%, that the two
fs-values belong to the same normal population. As a comparison, it is found
that the two values 10758, = 4.14 4 0.16 (set 2) and 3.67 - 0.28 (set 3) may
belong to the same population. After analyzing all g,-values it must be con-
cluded from a statistical point of view that the differences between these values
must be caused by systematic differences among the five sets of experiments.

If all experimental points are taken together (i.e. are assumed to belong
to the same normal population), the agreement between the mean values of
the least squares calculations and the values obtained by Ahrland and Norén
is quite reasonable (see Table 4). Fig. 1 also shows how well the computed
curve fits the experimental points. It is the author’s opinion that graphical
methods do not permit more information to be extracted from these data than
has been obtained by the original authors.

(d). The Ce(III )-SOf system; a cation exchange investigation. This is the
only system 47 known to the author where the parameters are not linear in
the equation and the trial-and-error least squares approach (see p.1729)has
been applied. In this particular case, equation 8b is applicable, and the maxi-
mum number of parameters, which have to be considered, are 4y, 4, f,, f; and
Bs. Of these constants 4, is known directly from the experiments (see below).
In the following treatment we shall assume that we have no knowledge of the
results of Fronseus’s calculations.

On the basis of the experiments, it can be assumed that all error can be attri-
buted to the measured partition ratios @, and are of the size g, = 4- 0.03 Q.
The experimental data Q([A]) comprise only 8 points. The curve through these
points is anchored at @y([A] = 0) = 0.752, which is our A,-value.

We now make a number of runs on the computor with equations based
on the following assumptions:

. . Lo . Cerium species
Run: Cerium species in solution on the Tesm
1 Ce?+, CeAt, CoAy Cedt+
2-—-5 » .- Cet, CeAT
6 Ce3+, CeAt, CeAy, CeA Ce3+
7-10 » 3 Ces+, CeA+ |

Here A2~ stands for SOF. Looking at runs 1—5 in Table 5, it follows from the
22/G-values that the most probable 4; value is obtained for run 1 (42/G value
closest to 1.0). However, even though the y2/G-value for run 1 is not improbable
for a fit between the assumed equation and the experimental data, one of the
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Table 5. The Ce(III)—80,3" system. G = 5 for runs 1—5, and 4 for runs 6 —10; i, = 0.752.

Run | 4, 10 B, 100 B, 1 000 B, Q, Qs Q, | xye
1 000 |345+014 165+016 0 0.424  0.201  0.0504 * | 1.51
2 004 | 345+ 020 290+ 020 0O 0.428 0199  0.0514 * | 2.67
3 [0.0787| 3.46 +- 0.26 410+ 023 0 0.430* 0198  0.0521 * | 3.90
4 1010 | 346+ 029 476+ 0.26 0 0.432* 0197  0.0523 * | 4.58
5 {030 | 348+ 0.60 11.08+1.09 0 0.044* 0.191* 00532 * | 9.94
6 [0.00 | 3474019 072+£051 0481026 | 0418 0205  0.0479 | 0.994
7 [0.04 | 401+ 0.21 1251 0.55 0.95+ 032 | 0.418  0.205  0.0481 | 0.946
8 §0.0787) 4.20 + 0.24 1.86 + 0.58 1.46 + 0.40 | 0.418  0.206  0.0482 | 0.904
9 [0.10 | 447+ 026 225+ 0.59 1.77+ 044 | 0417 0206  0.0482 | 0.884
10 §0.30 | 7.05+ 0.60 838+ 0.66 637+ 1.21 | 0417  0.206  0.0485 | 0.752
Fronmus| 0.0787| 4.3 4 0.3 2.2 +05 12 +03 0.414  0.202  0.0483 | —
+0.012 4 0.006 -+ 0.014

* These values are outside the 3 9, standard error in the measured Q-values.

computed points, @, = 0.0504 seems somewhat too far off from the measured
value 0.0483. We assume this is a significant difference, and therefore make a

new set of runs, 6— 10, where also CeA§ is considered in the equation. Since
22/@ has the same normal distribution as the sum S of the squares of the weigh-
ted residuals 3, y2/@ shall show a minimum for the most probable value of 4,,
No such minimum is achieved in runs 6—10, and no higher 4, value than 0.30
was tested, because higher values seemed very improble from a chemical point
of view. As compared to runs 1—5, the ¥?/G values in runs 6—10 indicate
that the functional form in the latter case is more probable. From this result
it may be concluded that the experimental data can be best explained by con-

sidering the species Ce®*, CeA*, CeAy, and CeA3 in the aqueous phase, and the
species Ce®* and CeA* in the resin phase. This is the same conclusion as reached
by Fronzus.

Unfortunately, as the least squares calculations were made on the present
data, the y2-test gives us very little help in finding the best 4, value. W. are
therefore forced to make a subjective judgement. Since the 4, value is of greater
importance for the higher complexes (i.e. higher g,; see left part of Table 5),
which dominate at the points of highest [A] value (the [A] value increases from
point @, to @,), we shall say that the best 4, is that, which causes the smallest
deviation between the computed and measured values of point @,; this value
turns out to be 0.0482 (runs 8 and 9). Since we here have two such values, we
chose the one which causes the smallest deviation in the @;-value, which turns
out to be for run 8, if the trend in @, is considered. This corresponds to the same
A,-value as Fronsus has arrived at from somewhat different considerations.
If should be observed, that the approach used here can be stated in a more
strict mathematical form, because what we have done is only to increase the
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weights of the points for the highest [A] values. It may be added that the elec-
tronic computor can easily be ordered to try the various 4, values automatically
until the 4, value, which gives the smallest S value, is obtained.

If we compare the constants obtained by Froneeus and by the method of
least squares for 4, = 0.0787, we find an excellent agreement. This shows
that complicated graphical treatments, when carried out on good data yield
results in almost complete agreement with the results of our machine calcula-
tions.

CONCLUSION

It is always necessary to check the computed results to see if they are rea-
sonable from a chemical point of view. Of all tests, which can be applied to
the data, this is the most crucial. When a sufficient number ofexperimental points
are at hand, it should also be checked (by hand or using the computor) that
the points have a normal distribution around the computed curve. Under
these circumstances, the method of least squares in combination with high
speed digital computors is both a powerful and time-saving tool for helping
complex chemists in analyzing their experimental data.
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