- Zsakó, I. Studii cercetari chim. Filiala Cluj 7 (1956) 53.
- Yatsimirskii, K. B. and Vasil'eva, V. N. Zhur. Neorg. Khim. 1 (1956) 1983.
- Blomstrand, C. W. J. prakt. Chem. [2] 40 (1889) 328.
- Tong, J. Y. and King, E. L. J. Am. Chem. Soc. 76 (1954) 2132.
- King, E. L. and Neptune, J. A. J. Am. Chem. Soc. 77 (1955) 3186.
- Krauss, H.-L. and Gnatz, G. Chem. Ber. 92 (1959) 2110.
- 9. Penfield, S. L. Am. J. Sci. [3] 48 (1894) 30.
- Raff, P. and Brotz, W. Z. anal. Chem. 133 (1951) 241.
- 11. Gran, G. Acta Chem. Scand. 4 (1950) 559.

Received September 7, 1961.

Crystallographic Data of Sr₂CrO₄

KARL-AXEL WILHELMI and OLA JONSSON

Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm, Sweden

Rather few compounds containing tetrature and the information about their crystallographic properties is incomplete. The syntheses of CrF₄ and CrBr₄ have been reported ^{1,2} but no crystallographic data are available for these substances. In 1950 the fluoro complexes M₂CrF₆ (M = K, Rb, and Cs) were prepared ³ and Bode and Voss ⁴ found that these complexes have the octahedral arrangement with discrete CrF²₆ ions. The coordination number 6 is also found in CrO₂ which phase is of a rutile type ^{5,6}.

Scholder and Sperka 7,8 have reported the syntheses of Ba₂CrO₄, Ba₃CrO₅ and Sr₂CrO₄, containing chromium with an average oxidation number of + 4. According to these authors, there exist structural relationships between the compounds M₂TiO₄ and M₂CrO₄ (M = Ba and Sr). The crystal structure of Ba₂TiO₄ has been

The crystal structure of Ba_2TiO_4 has been determined by Bland . The space group is $P2_1/n$ and the cell dimensions are:

 $a = 6.12 \text{ Å}, b = 7.70 \text{ Å}, c = 10.50 \text{ Å}, \beta = 93^{\circ}8'$

The structure is of the β -K₄SO₄ type and is closely related to β -Ca₂SiO₄. The environment of the titanium atom is unusual; it is approximately tetrahedral and the structure is considered as an arrangement of discrete TiO₄-groups and barium atoms.

Sr₂TiO₄ belongs according to Balz and Plieth ¹⁰ to an interesting group of oxide compounds with the same crystal structure as K₂NiF₄ and K₂MgF₄¹¹. The space group is I4|mmm and the cell dimensions are:

$$a = 3.88 \text{ Å}$$
 $c = 12.58 \text{ Å}$

The structure is formed by somewhat distorted TiO₆-octahedra arranged in layers with the composition TiO₂ by sharing corners. In the direction of the tetragonal caxis an alternation of two SrO-layers with one TiO₂ layer can be distinguished.

By a partial substitution of Sr^{2+} ions (about 5 mole %) in Ba_2TiO_4 , specimens with the orthorhombic β - K_2SO_4 structure were obtained by Kwestroo and Paping 12 . The solid solution area ends at a composition with a Ba^{2+}/Sr^{2+} ratio of about 1:3. The structure of Sr_2CrO_4 has been investigated by the present authors and preliminary results are given in this paper.

Crystals of Sr₂CrO₄, suitable for singlecrystal X-ray studies, were prepared from chromium(III)oxide, strontium chromate(VI) and carbonate-free strontium hydroxide in a platinum crucible at 900°C with argon as a protecting gas.

The excess of strontium hydroxide was extracted with water-free methanol. The crystals obtained were small blue-black prisms stable in air and insoluble in hot acetic acid.

The hexavalent chromium was determined iodometrically, the total chromium after oxidation by hydrogen peroxide in alkaline solution. The strontium was determined gravimetrically as strontium sulphate in chromium-free solutions. The reproducibility of the analyses was found to be good and the results in fair agreement with the values calculated for Sr_2CrO_4 .

Chromium Chromium Strontium (VI), % total, % %

Found 5.88 ± 0.05 17.62 ± 0.05 60.2 ± 0.1 Calc. 5.95 17.85 60.17

Table 1. Crystallographic data of Sr₂CrO₄.

Laue symmetry: mmm

Unit-cell dimensions: a = 14.193 Å

b = 10.033 Å

c = 5.790 Å

Absent spectra: hk0 with h odd 0kl with k + l odd

Space group: No. 33 $Pn2_1a$

Density observed: 4.54 g cm⁻³ Density calculated: 4.50 g cm⁻³ (for Sr₁₈Cr₈O₃₂)

Approximate values of the cell dimensions were obtained from Weissenberg photographs (CuK radiation). More accurate values were then obtained from a Guinier powder photograph (80 mm diameter, transmission position) with strictly monochromatized CuK₁ radiation. Potassium chloride (Analar, British Drug Houses, a = 6.2919 Å at 20°C, Hambling 13) was added to the specimen as an internal standard. A few very weak extra lines showed the presence of a small content of non-identified impurities in the specimen.

Rotation photographs around [100], [010] and [001] and Weissenberg photographs (hkl: h=0-8, k=0-6 and l=0-3) showed the crystal to be orthorhombic. There seems to be an almost exact relationship between the lengths of the cell edges $a:b:c=\sqrt{6}:\sqrt{3}:1$ (Table 1). Thereflexions systematically absent are characteristic of the space groups No. 62 Pnma and No 33 $Pn2_1a$. All attempts to solve the structure on the basis of the space group No. 62 Pnma failed and it was concluded that the space group might be No. 33 $Pn2_1a$.

The present stage of the structure determination is in accordance with the latter symmetry. Thus studies of the Patterson and electron density projections have lead to a structure containing the 16 strontium and 8 chromium atoms in 6 sets of 4-fold

positions (4a) of the space-group $Pn2_1a$. The distribution of the metal atoms indicates that Sr_2CrO_4 is isomorphous neither with K_2NiF_4 nor with K_2CrO_4 (low- K_2SO_4 -type), but that the structure very likely contains discrete four-coordinated chromium-oxygen complexes similar to those found in K_2CrO_4 . The refinement of the structure will be continued according to this assumption.

Acknowledgements. This investigation forms part of a research programme which is financially supported by the Swedish Natural Science Research Council.

The authors are indebted to Professor Arne Ölander for his kind interest and to Professor Arne Magnéli for stimulating discussions and criticism in connection with this work.

- Wartenberg, H. von Z. anorg. Chem. 247 (1941) 135.
- Šime, R. J. and Gregory, N. W. J. Am. Chem. Soc. 82 (1960) 93.
- Huss, E. and Klemm, W. Z. anorg. Chem. 262 (1950) 25.
- Bode, H. and Voss, E. Z. anorg. Chem. 286 (1956) 136.
- Michel, A. and Bénard, J. Compt. rend. 200 (1935) 1316.
- Wilhelmi, K.-A. and Jonsson, O. Acta Chem. Scand. 12 (1958) 1532.
- Scholder, R. and Sperka, G. Z. anorg. Chem. 285 (1956) 49.
- 8. Sperka, G. Dissertation 1952, Karlsruhe.
- 9. Bland, J. A. Acta Cryst. 14 (1961) 875.
- Balz, D. and Plieth, K. Z. Elektrochem. 59 (1955) 545.
- Brehler, B. and Winkler, H. G. F. Heidelberger Beiträge zur Mineralogie und Petrographie 4 (1954) 6.
- Kwestroo, W. and Paping, H. A. M. J. Am. Ceram. Soc. 42 (1959) 292.
- 13. Hambling, P. G. Acta Cryst. 6 (1953) 98.

Received September 7, 1961.