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(reported ** 1790 cm™! and 1 850 cm-?), The
addition compound between triphenyl
phosphine and maleic anhydride has two
strong bands at 1702 cm™ and 1805 ecm™,
We assume that these two bands are due
to the coupling between two carbonyl
groups and suggest therefore that the addi-
tion compound is & phosphorus ylid namely
compound No. 12 in Table 1. This structure
may also explain the unreactivity of 1,2-
substituted maleic anhydrides °.

My sincere thanks are due to Norwegian
Defence Research Establishment for financial
support and to Arnljot Nerland at the same
institute for recording the infrared spectra.
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”Pit-mapping” — a General Ap-
proach for Computer Refining of
Equilibrium Constants

DAVID DYRSSEN, NILS INGRI and
LARS GUNNAR SILLEN

Department of Inorganic Chemistry, Royal
Institute of Technology, Stockholm 70,
Sweden

The problem of determining the equilib-
rium constants for & number of simulta.-
neous equilibriainsolution may beexpressed
as a special case of the following well-known
general problem. Having measured & quan-
tity y and assumed a functional relation-

ship:
Y = f(ky, ks. Kop. kn; @y, 4...) (1)

between y and some quantities a,, a,. . .
that can be varied but whose values are
assumed to be known accurately in each
experiment, one seeks to determine the set
of unknown constents, k, ... ky.

Provided a) that the expression for f
is correct, b) that there are no other errors
(especially no systematic ones) except the
random errors in y, c¢) that the errors in y
are ’'normally” distributed around the
correct value, and d) that the weight w;
given to each measurement y; is inversely
proportional to the square of its standard
deviation; then the ’’best” values for
k, . .. kx would be those that minimize the
eITor-square sum;

U= Zwly;~f(ky ... Jn; @y, @y .. .)) 2 (2)
4

Even though one can seldom hope that
all these assumptions are correct, the
"]east-squares’ condition, U = minimum,
is often employed in calculations. It is
“objective’’ in the sense that the same set
of data, and the same assumptions, should
give the same answer in the hands of diffe-
rent workers. Perhaps, however, one
should not forget the risk of over-estimat-
ing the significance of the answer,

If f is a linear function of the k’s, the
"]east-squares’’ condition leads to linear
equations, which can be solved by straight-
forward methods. For instance, in studies
of equilibria of step-wise complex forma-
tion, if one has measured the concentration
of the central atom, or of one specific com-
plex (as it is, for instance, usually done in
extraction studies), this condition leads to
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linear equations which can be solved by
means of the “least-squares’ programs of
various high-speed computers 1"

If the function f is not linear, the general
trend has been to reduce it to a linear one,
either by transformation (if possible), or,
using the Gauss method, by expressing the
derivatives of U by means of Taylor series,
and using only the first terms. Program-
ming & computer for the Gauss method is
not always simple, and its performance is
capricious 4,

In systems with polynuclear complexes
between two reagents A and B, one usually
meets with the two equations

B = b + ZqPpatts; BZ = ZpPpatbt  (3)

In (3), B is the total concentration of B,
a and b are the concentrations of free A and
B, p and ¢ are integers, fip; are a set of
equilibrium constants, and Z 1s the average
number of A bound per B. The data are
usually of the form Z(B, a), so that B and
a are known rather accurately. Since b
must be eliminated from the equations, it
seems hard to attack problems like this by
straight-forward *’least-squares’’ equations.

However, one can make oneself free from
the condition that the equations should be
linear, if one considers directly the error-
square sum U in (2) and studies the func-

tion
U(ku ky. .. kN) (4)

This is done in a family of computer
programs “LETAGROP” which we are
now developing, using the Ferranti-Mer-
cury autocode.

The principle is as follows; it is so simple
that it may have been used earlier by
others without our being aware of it.

By means of graphical methods — which
we consider as the most important part of
the data treatment — we conclude which
complexes are present or may be suspected
to exist in appreciable amounts, and obtain
a set of approximate equilibrium constants.

The computer then systematically varies
each constant in turn, keeping the others
constant, until it finds the value that gives
the lowest value for U. Then it passes to
another constant and etc; it can be made
to return to a certain constant and re-
adjust it later on. The procedure gives not
only the lowest point:

| Umin = U, = U(k,”’, k"’ .. . kx"’) (5)
but also a map of the surroundings.

For linear expressions fin (1), in particu-
lar, U(k,. .. ky) is & second-degree surface:
if N = 1, it is & parabola, with N = 2 an
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elliptic paraboloid, for higher N it is a
generalized elliptic paraboloid in (N + 1)-
dimensional space. We shall for any value
of N refer to the lowest point U, and its
immediate surroundings as the »pit”’:

A suitable measure of the spread of the
data is the range around U, enclosed by
what we may call the D boundary”

U="U, + Us(n—N)t= U, + U/n ()

Here, U, is the value of U at the lowest
point (5) of the pit, and n is the number of
experiments. In our experiments, as a rule,
n» N. The projection of the D boundary
along the U axis is two points if N =1,
an ellipse if N = 2, an ellipsoid if N = 3
and for higher N a genera.lized ellipsoid in
N dimensional space (k.. .ky), with the
V]east-squares point’” (k" ...ky") as its
centre.

The range of values that each k, can
agsume on the D boundary is identical with
the range of its “’standard deviation”
k'’ + D[k,], whatever connection this may
have with chemical reality.

For non-linear cases it seems & permis-
sible approximation to assume the pit’’ to
be a second-degree surface in-the range
close to U,. By proper programming, the
computer can be made to search for the
lowest point of the ’pit’’ within any rea-
sonable precision; assuming the U surface
to be of the second degree, one can calculate
directly the position of the lowest point,
and the extension of the D boundary, given
a certain minimum number of U values
(three for N = 1, six for N = 2, etc).*

If a certain k, exerts an influence only
in a limited region of the data field, the
program allows one to screen out the other
points, and then to consider the contribu-
tion to U from that part only.

The same main programs "LETAGROP”’
can be used for various non-linear problems,
The special equations valid for each pro-
blem need only be stated in a short addi-
tional program and are then solved by the
general method of our program "KUSKA”
which forms a loop in LETAGROP, So,
even though the machine may have to
work several minutes more than in a
straight-forward solution, great gains are
made in the human programmer’s time.

In the future we intend to apply these
computer programs t0 & number of various
chemical problems, especially the following:

* Note added in proof. This procedure has
proved much faster than adjusting the con-
stants one by one.
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a) The refinement of the equilibrium
constants in systems with polynuclear com-
glexes, where approximate values have

een found graphically.

b) Calculation of consecutive equilibrium
constants in systems with mononuclear
complexes, where only the ligand number
has been determined: even if linear trans-
formations can be made b the pit-mapping
method seems a worth-while alternative.
Even spectrophotometric data, which com-
monly give non-linear expressions may be
attacked by this method.

¢) Calculation of the parameters in the
“two parameters’’ approximations for
equilibria, where the available data are not
accurate enough for determining, inde-
pendently, the formation constants for all
the complexes MA, MA,, MA, ... MAy. For
such systems, two ways of approximate cal-
culations have been proposed:

1) When the standard deviation of an
individual equilibrium constant comes out
as greater than the value of this constant,
Sullivan, Rydberg and Miller *b eliminate
that particular constant from their equa-
tions, which from & chemical point of view
is equivalent to assuming that the concen-
tration of the related species is equal to
Zero.

2) In the “two parameters’’ approxima-
tion 5, one assumes that all complexes exist
and that the ratio between consecutive
formation constants is & constant. — Neit-
her of the approximations 1) or 2) can be
completely true, but the second one may,
we think, often come somewhat closer to
chemical reality. Earlier, only the first
approximation could be treated by compu-
ter programs 2.

Our results hitherto like, in our opinion,
those of Sullivan et al.?b indicate that with
good data, the least-squares’ approach
gives no gain in real accuracy, as compared
with adequate graphical methods, using the
experimental data directly. In problems
with many constants to be determined, con-
siderable time may however be gained by
making the final refinement of the con-
stants by means of the computer.

The results and the full description of our
program, will be published in due time.

This work is part of a program supported by
the Swedish Atomic Research Council (AFR)
and the Swedish Natural Science Research
Council (NFR).
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Investigation of the Structure of
Trifolirhizin, an Antifungal Com-

pound from Trifolium pratense L.

J. B-SON BREDENBERG and
PENTTI K. HIETALA

Laboratory of the Foundation for Chemical
Research, Biochemical Institute,
Helsinki, Finland

n an investigation of the antifungal

substances in red clover (T'rifolium pra-
tense L.) the isolation of one of the main
components, CyH,,040, m.p. 139—140°, has
been reported !. This compound has now
been investigated more closely. Since it is
apparently a new compound, isolated so
far only from the roots, the name trifolirhi-
zin is proposed for it.

Trifolirhizin crystallizes from methanol
as rods, m.p. 142—144° (decomp.), [a]¥
—183°, with one mole of methanol. The
elementary composition of the compound
has now been found to agree with Cy,H,30;,.
It does not contain methoxyl or C-methyl
groups and, according to the chemical and
infrared data, is free from carbonyl and
carboxyl groups. Upon catalytic hydroge-
nation it 18 recovered unchanged. It forms
a tetraacetate, CyoHsp04y, m.p. 188—189,°
[a]3 —126° in which all the hydroxyl
groups are acetylated. Upon acid hydro-
lysis it forms glucose and ether-soluble
substances which could not be characteri-
zed. Alkaline hydrolysis probably also
releases glucose. Trifolirhizin is thus a
glucoside.

Taking the glucose molecule into ac-
count, the empirical formula for the agly-
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