Heats of Hydrolysis of N-Acetylated Imidazole, 1,2,4-Triazole and Tetrazole

INGEMAR WADSÖ

Thermochemistry Laboratory*, University of Lund, Sweden

The heats of hydrolysis of N-acetylated imidazole, 1,2,4-triazole and tetrazole have been determined calorimetrically at 25°C. For the idealized hydrolysis reaction

$$RNAc(s) + H_2O(l) \rightarrow RNH(s) + HOAc(l)$$

the enthalpy changes were found to be: -4.83 ± 0.05 kcal/mole for RNH = imidazole, -7.29 ± 0.06 kcal/mole for RNH = 1,2,4-triazole and -10.31 ± 0.09 kcal/mole for RNH = tetrazole.

Heats of solution in actone have been determined for the compounds participating in the hydrolysis reaction. From the heats of solution obtained, heats of hydrolysis referring to the reaction RNAc(acetone) + H_2 O(acetone) \rightarrow RNH(acetone) + HOAc(acetone) have been calculated to be: -7.52 ± 0.07 kcal/mole for R = imidazole, -9.03 ± 0.07 kcal/mole for R = 1,2,4-triazole and -12.35 ± 0.10 kcal/mole for R = tetrazole. Free energy changes in transacetylation from tetrazole \rightarrow 1,2,4-

triazole - imidazole, have been briefly discussed.

During recent years a considerable amount of evidence has accumulated, that the imidazole ring of histidine forms an essential part of the active centre of some hydrolytic enzymes **. These hydrolysis processes in which esters or amides are involved, have been considered as two-step reactions. In the first step an imidazole group in the enzyme is believed to be acylated, after which follows a rapid hydrolysis. The kinetics of these reactions as studied on model substances have been extensively investigated. However, very little attention has been paid to the energetic relationships between substrate, enzyme intermediate, and the products. Therefore, in connection with earlier calorimetric work on acetylated compounds 2-5, it was felt desirable to determine the heat of hydrolysis of N-acetyl imidazole as well as that of N-acetyl 1,2,4-triazole and N-acetyl tetrazole.

^{*} Sponsored by The Swedish Natural Science Research Council and by The Swedish Technical Research Council.

^{**} See, e.g., the reference list given in Ref.1

The compounds participating in the idealized hydrolysis reaction V are in condensed states, being solids and liquids. The derived standard heats of hydrolysis, therefore, are not closely comparable. As heats of vaporisation data are not available, heats of solution in acetone, which is believed to be an inert solvent for these compounds have been determined.

Some years ago the kinetics of the hydrolysis of these N-acetyl compounds were studied by Staab 6, which investigations will be supplemented by some enthalpy data given in this paper.

EXPERIMENTAL

Materials. Imidazole was prepared from D-tartaric acid and hexamethylenetetramine, and the crude product was recrystallized from benzene. After sublimation colourless crystals, melting at 88.7—89.4°C, were obtained. Imidazole was acetylated by acetyl chloride in benzene solution. After removing the solvent in vacuum, the colourless crystalline residue was recrystallised from a benzene-ligroin mixture (1:1) and the product obtained was washed with petrol ether (boiling range 40-60°C) and dried in vacuum. After sublimation the melting point of the ester was 103.0-104.0°C. Potentiometric titration on the acetic acid formed by hydrolysis, gave an equivalent weight correspond-

ing to a purity of 99.7 %.
1,2,4-Triazole was prepared from formamide and hydrazine hydrochloride *, and the crude product was recrystallized from ethyl acetate. After sublimation colourless crystals

melting at 120.2-120.9°C were obtained.

Acetylation of the triazole by acetyl chloride was performed in benzene solution 6. After removing the solvent in vacuum, a white crystalline residue melting at about 37°C was obtained. In the further purification use was made of the exceptionally high vapour pressure of N-acetyl 1,2,4-triazole. The crystalline mass was put in a glass bulb fitted with a 30 cm tube. The tube was connected to a vacuum system for ca 10 min, after which it was sealed off. The bulb was placed on a sand bath maintained at a temperature slightly below the melting point of the substance, with the tube in a vertical position and after a week, most of the substance had sublimed into the tube, where it formed big colourless crystals. The process was repeated, after which the melting point was 39.7-40.7°C. Potentiometric titration indicated an equivalent weight equal to the theoretical.

Tetrazole was prepared from cyanogen and hydrazoic acid and the crude product was sublimed to give white crystals melting at 153.5-155.0°C. Potentiometric titration indi-

cated the purity to be 99.5 %.

N-Acetyl-tetrazole was prepared from the silver salt of tetrazole by reaction with acetyl chloride in benzene solution. The light yellow product was recrystallised from a benzene-ligroin (8:2) solution, to give colourless needles. After sublimation the substance melted at 58.0—59.0°C. Equivalent weight, obtained by potentiometric titration with sodium hydroxide in aqueous solution, corresponded to a purity of 99.6 %.

Acetone used in the solution experiments was treated with potassium permanganate 10,

dried with Drierite and distilled through a 10-plate column.

The heterocyclic acetates are rapidly hydrolyzed in the air and thus special precautions had to be taken. After the final sublimation, all handling of them, including the filling into ampoules for the calorimetric experiments, was carried out in a "dry air box" fitted with rubber gloves.

Apparatus. The reactions were carried out in a metal "isothermal" calorimeter, which

has been described in detail elsewhere (Type D in Ref. 11).

Calibration. The heat equivalent of the calorimeter, including its content, was determined electrically by passing a known current for a given time (300 sec) through the heating element. The calibrations were performed on the system after the reaction had taken place. The result of each calibration experiment was adjusted to give the heat equivalent of a "standard system", ε°, in which the calorimetric liquid contained the reaction products from a certain amount of substance. The actual heat equivalent values, ε , were obtained from ε° , by applying a small correction for the variations in the amount of substance used.

Calorimetric procedure. The calorimeter was charged with 100 ml of liquid, either 0.8 N aqueous sodium hydroxide solution or acetone. The heats of hydrolysis measurements were supplemented by determination of heats of solution in order to obtain the standard enthalpy changes of the hydrolysis reactions.

All reactions were very rapid, the reaction period was 5 min, and the initial and final thermistor resistance values could therefore be graphically evaluated.

Corrections to the standard states: The idealized, isothermal hydrolysis reaction V is obtained from eqns I-IV, which correspond to the reactions taking place under experimental conditions.

I $RNAc(s) + H_2O(soln) \rightarrow RNH(soln) + HOAc(soln)$	ΔH_1
II $RNH(s) \rightarrow RNH(soln)$	ΔH_2
III $HOAe(l) \rightarrow HOAe(soln)$	ΔH_{3}
$IV H_2O(1) \rightarrow H_2O(soln)$	ΔH_{4}
$V RNAc(s) + H_2O(l) \rightarrow RNH(s) + HOAc(l)$	$arDelta H^{ar{0}}$
$\Delta H^{\circ} = \Delta H_1 - \Delta H_2 - \Delta H_3 + \Delta H_4$	

Units of measurements. The results of the calorimetric experiments are expressed in terms of the defined calorie, equal to 4.1840 abs. joules, and refer to the isothermal process at 25°C, and to the true mass. The molecular weights were computed from the 1951 table of international atomic weights 12.

RESULTS

The experimental results are summarised in Tables 1-4. In the tables the following symbols have been used:

 $\log R_{\rm i}/R_{\rm f}$ the expression proportional to the temperature change: R_i and R_f are the corrected thermistor resistance values at the start and the end, respectively, of the main period.

> the heat equivalent of the actual system in calories per unit of $\log R_i/R_i$

From five calibration experiments the standard heat equivalent (referring to 200 mg of substance) was calculated to be 9 071 \pm 5 * cal/unit of log $R_{\rm i}/R_{\rm f}$. Results from heats of hydrolysis measurements are given in Table 1. The amount of N-acetyl imidazole and -tetrazole participating in the reactions was corrected with regard to the analysis performed.

Results from the heats of solution measurements performed in 0.8 N aqueous

solution of sodium hydroxide are given in Table 2.

Table 3 contains a summary of data connected with eqns I—V. The uncertainties given in Table 3 do not include possible systematic errors. As the accuracy of the titrations, by which the purity of the N-acetyl compounds and acetic acid was tested, cannot be considered to be better than $\pm 0.2 \%$, the true uncertainties are somewhat greater. Taking this into consideration, the standard enthalpy changes will be taken as -4.83 ± 0.05 , -7.29 ± 0.06 and -10.31 ± 0.09 kcal/mole for the hydrolysis of N-acetylated imidazole, 1,2,4triazole and tetrazole, respectively.

^{*} When five or more determinations are performed, the uncertainties are given as the standard deviation of the mean. Otherwise they are the average deviation of the mean.

T	a.h	7.	7	

RNAc	mmoles	ε	$10^4 imes \log R_{ m i}/R_{ m f}$	$-\Delta H$, kcal/mole
N-Acetyl imidazole	2.748	$9\ 075$	45.47	15.02
•	2.982	$9\ 076$	49.29	15.00
	2.318	$9\ 073$	38.27	14.98
	2.148	9073	35.49	14.99
				$\overline{\textbf{Mean 15.00}} \pm \textbf{0.01}$
N-Acetyl 1,2,4-triazole	2.826	9 075	67.65	21.72
	2.742	9 075	65.68	21.74
	3.267	9 076	78.27	21.74
	3.215	9076	76.86	21.70
				$\overline{21.73} \pm 0.02$
N-Acetyl tetrazole	2.724	$9\ 071$	87.52	29.14
	2.151	9 073	69.14	29.16
	2.202	9 073	70.99	29.25
	2.371	9074	76.19	29.16
				$\overline{29.18} \pm 0.04$

Table 2.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\overline{\text{Mean}} \ \overline{-3.45} \pm 0.01$
-
10 (m · 1
1,2,4-Triazole 3.034 9 071 2.81 0.84
2.909 9071 2.62 0.82
2.713 9071 2.43 0.81
$\begin{array}{ccc} \textbf{Mean} & \phantom{0.0000000000000000000000000000000000$
Tetrazole 2.149 9 069 12.54 5.29
2.315 9069 13.38 5.24
2.822 9 071 16.28 5.23
$\begin{array}{c} -\frac{1}{2} & \frac{1}{2} $
Acetic acid 2.988 9 074 44.83 13.61
3.173 9 071 47.55 13.59
2,233 9 068 33.80 13.73
2,650 9 069 39,86 13.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.222 9071 48.33 13.61
$\frac{13.64 \pm 0.02}{\text{Mean}}$
Water 2.733 9 067 0.07 0.02
3.695 9 067 0.10 0.02
Mean $\frac{0.02}{0.02 \pm 0.00}$
Table 3.
RNH $-\Delta H_1$ $-\Delta H_2$ $-\Delta H_3$ $-\Delta H_4$ $-\Delta H^{\circ}$
Imidazole $15.00 -3.45 13.64 0.02 4.83 \pm 0.03$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Tetrazole 29.18 5.25 13.64 0.02 $10.31 + 0.05$

Acta Chem. Scand. 14 (1960) No. 4

Heats of hydrolysis in acetone

From three calibration experiments the heat equivalent (variations in the heat capacity of the system were insignificant for the results) was calculated to be $4\ 268 \pm 11\ \text{cal/unit}$ of log R_{i}/R_{t} . The heats of solution measurements are summarised in Table 4. By combining these heats of solution data with

	Table 4		
Substance	mmoles	$10^4 imes \log R_{ m i}/R_{ m f}$	$-\Delta H$, kcal/mole
Imidazole	2.618 1.980 1.867	$-24.59 \\ -18.82 \\ -17.72$	$\begin{array}{c} -4.01 \\ -4.06 \\ -4.05 \\ \hline \text{Mean} \ \ \overline{-4.04} \pm 0.02 \end{array}$
1,2,4-Triazole	1.979 2.349	$-18.24 \\ -21.56$	$\begin{array}{c} -3.93 \\ -3.92 \\ \hline -3.93 \pm 0.01 \end{array}$
Tetrazole	2.304 1.492 1.805	$-16.28 \\ -10.64 \\ -12.89$	$\begin{array}{c} -3.02 \\ -3.04 \\ -3.05 \\ \hline -3.04 \pm 0.01 \end{array}$
N-Acetyl imidazole	2.528 0.909 3.123	$-32.67 \\ -11.90 \\ -40.10$	$\begin{array}{c} -5.51 \\ -5.59 \\ -5.48 \\ \hline -5.53 \pm 0.04 \end{array}$
N-Acetyl 1,2,4-triazole	2.398 2.634	$-25.02 \\ -27.65$	$rac{-4.45}{-4.48} \ ext{Mean} \ rac{-4.47}{-0.02}$
N-Acetyl tetrazole	1.520 1.250	$-13.75 \\ -11.39$	$rac{-3.86}{-3.89} \ ext{Mean} \ rac{-3.88}{-3.88} \pm 0.02$
Acetic acid	3.252 1.788 2.833	1.77 0.66 1.03	$\begin{array}{c} 0.23 \\ 0.16 \\ 0.16 \\ \hline 0.18 \pm 0.03 \end{array}$
Water	$3.331 \\ 3.423$	- 7.96 - 8.13	$rac{-1.02}{-1.01} \ ext{Mean} \ rac{-1.02}{-1.02} \pm 0.01$

the given standard heat of hydrolysis, enthalpy changes referring to reaction VI were obtained.

VI RNAc(acetone) + $H_2O(acetone) \rightarrow RNH(acetone) + HOAc(acetone) \Delta H_6$

 ΔH_6 was calculated to be -7.52 ± 0.07 kal/mole, -9.03 ± 0.07 kcal/mole and -12.35 ± 0.10 kcal/mole for RNH = imidazole, 1,2,4-triazole and tetrazole, respectively.

Acta Chem. Scand. 14 (1960) No. 4

DISCUSSION

From the heats of hydrolysis data referring to reaction VI, the heats of transacetylation, in acetone solution, from N-acetyl-tetrazole to 1,2,4-triazole, and from N-acetyl 1,2,4-triazole to imidazole, are calculated to be -3.32 + 0.12kcal/mole and -1.51 + 0.10 kcal/mole, respectively. Considering the symmetry of these transacetylation reactions and the absence of phase changes, the entropy changes must be very small. The standard free energy changes, therefore, should be almost the same as the corresponding enthalpy changes. The given data thus indicate, that from an energetic point of view, the transacetylation reactions are favourable only in the direction N-acetyl-tetrazole → 1,2,4-triazole → imidazole. This conclusion is in agreement with the observations made by Staab 6. Some heats of aminolysis of the N-acetylated compounds investigated here have also been determined. They will be presented in connection with other aminolysis data in a forthcoming paper.

Acknowledgement. This work has been supported by a grant from the University of Lund.

REFERENCES

- 1. Bruice, T. C. and Sturtevant, J. M. J. Am. Chem. Soc. 81 (1959) 2860.
- Wadsö, I. Acta Chem. Scand. 11 (1957) 1745.
 Wadsö, I. Ibid. 12 (1958) 630.
 Wadsö, I. Ibid. 12 (1958) 635.

- 5. Wadsö, I. Ibid. In press.
- 6. Staab, H. A. Chem. Ber. 89 (1956) 1927.

- Shaab, H. A. Chem. Ber. 33 (1930) 1521.
 Snyder, H. R., Handrick, R. G. and Brooks, L. A. Org. Syntheses 22 (1942) 65.
 Strain, H. H. J. Am. Chem. Soc. 49 (1927) 1996.
 Oliveri-Mandalá, E. and Passalacqua, T. Gazz. chim. ital. 41: II (1911) 430.
- 10. Vogel, A. I. Practical Organic Chemistry. Longmans, Green and Co. London 1948.
- 11. Sunner, S. and Wadsö, I. Acta Chem. Scand. 13 (1959) 97.
- 12. Wichers, E. J. Am. Chem. Soc. 74 (1952) 2447.

Received January 15, 1960.