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The Viscosity of Degrading Polymer Solutions
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The viscosity of a polymer solution is calculated as a function of
time for several simplified degradation models, assuming the validity
of Staudinger’s rule. It is shown how the theoretical results may be
compared with measurements obtained using an Ostwald viscometer,
which only give a sliding time average of the viscosity, and finally the
application of the present very crude theories to enzymatic reactions
is discussed. The theoretical results obtained are compared with the
experiments of Andersen and Graae on the enzymatic hydrolysis of
hyaluronic acid.

In his classical work on the degradation of high polymers W. Kuhn ! derived
an approximate expression for the molecular weight distribution in a sample
which before degradation had been monodisperse and of virtually infinite
molecular weight. The derivation was based on statistical considerations, and
the results are only valid for samples with an average molecular weight small
compared to that of the initial sample.

His results have been rederived several times. Sakurada and Okamura 2
used a method similar to Kuhn as did Montroll and Simha 3. The latter authors,
however, generalized the results to be valid for polymers with finite initial
molecular weight. Simha % and Sillén 5 derived similar results, using a kinetic
model which is essentially identical with the first model to be discussed in
this paper.

Hultin @ has used the results of Sillén to derive an approximate expression
for the excess viscosity of a solution of a degrading polymer as a function of
time. In this derivation is used a limiting process in which it is implicitly
assumed that a long time ¢ has elapsed since the start of the experiment. The
result obtained, namely that the excess viscosity is proportional to ¢-1, is there-
fore meaningless in the limit ¢ ~ 0.

It is the aim of this paper to derive formulae for the viscosity for the model
discussed by Sillén and for a few other models which may be relevant in connec-
tion with the work on enzymatic degradation of high polymers. To do so we
shall make use of a different limiting process and obtain results which are
correct for all times, in particular for £ = 0. One of the formulae we obtain
may be found in Silléns work too, but there it is stated that it is only an
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approximation. We shall show that the result can be derived without approxi-
mations save for the trivial one of assuming that the molecular weight of the
initial sample is virtually infinite. Finally we want to discuss the applicability
of the present very crude theory to systems where the degradation is caused by
enzymes.

GENERAL ASSUMPTIONS

The usual model of a degrading polymer is a chain where each link has the
same probability of breaking per unit time. Furthermore this probability is
independent of the number of bonds in the molecule. It is believed that this
is a fairly realistic picture, and therefore we shall first consider this model,
but since there is experimental evidence that some polymers, e. g. hyaluronic
acid ? may have a preference for breaking in the middle when degraded en-
zymatically, we also investigate a crude model where the molecules split ex-
clusively in the middle. In this model we can, because of its simplicity, intro-
duce that the probability of splitting the central bond depends on the chain
length.

Throughout the paper we shall assume the validity of Staudinger’s rule &,
viz.

Mo = b 0, M2 (1)

in which 7, is the increase in viscosity caused by a solute of molar concentra-
tion ¢, and molecular weight M,, and k& is a constant. The general validity of
this rule may well be questioned, and it is well to bear in mind that the follow-
ing considerations apply only to polymers which follow the Staudinger rule.
In the case of hyaluronic acid this has been shown experimentally °.

Furthermore we shall assume that for a solution of several species the excess
viscosity is additive, wiz.

n = z M=k Z e M,2 @)

Our last general assumptions are that the degradation is such that the end-
product is a repeated unit in the macromolecule which is the starting material,
although not necessarily the smallest repeated unit, and that the initial high
polymer is monodisperse. We shall indicate below, however, how this last
assumption could be dispensed with.

Let the weight of the repeated unit be M. We then have M, = nM, and

n) =k D inMP =k > ni,) (3)

so that, except for a constant factor, #(t) is the second moment of the molecular
weight distribution.

Following Andersen and Graae 1° we shall denote the reduced excess visco-
sity 5(¢)/n (¢ = 0) by y(f). We then have y = 1 for ¢ = 0 and, loosely speaking,
1—y is a degree of advancement.
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MODELS OF DEGRADATION

We shall now study a few simple models. In each case we start by stating
the additional assumptions we make for the particular model.

Model 1

Assumption: All bonds between repeated units split with equal probability
(w) per unit of time.

Notation: ¢; is the concentration of molecules of molecular weight kM.
NM is the molecular weight of the initial substance.
k—1 is the number of bonds in the molecule with concentra-
tion c;.

The equations for the time-dependence of the concentrations are thus:

ey = — w(N—1)cy
. N
¢ = 2w ¢; — (k—1)wey (4)

’,

. N
Cl = 2w z C’-
$==2

By straight-forward integration we get for c;(0) = &y (that is, ¢, = 1 for
k = N, and otherwise zero)

oy = e-(N-lwt
Cn-y = 20-N-Dwt __ 9o—(N-1jut
Cy-g = 30~ N-B)wt _ go-(N-2ut | o-(N-lyot

()

¢y = (N—1)o* — 2(N—2)e~2* 4 (N —38)o—3=
6 = N —2(N—1e™ 4 (N—2)e2

These expressions we insert in

n==FK Z n 2,
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and get
N-1
[N + 2N Z ot — 2 Z e"'""]
or
N-1
y N2[:N + 2N Z e—nwt — 92 Z ne-nwt:] (6)
n=1

which is the final expression for y(t).
It is easily verified that these expressions for the excess viscosity are
identical with the one derived by Sillén: (our notation)

_ 1 + e-wt 2e—wt(1 _ e-—Nwt)
n==k {1 — e N(1—e™)2 l

The expression for y(t) can be simplified considerably by letting N — oo,
but this limiting process can be carried out in different ways.
Sillén argued that for N — oo, one will have

1+ e—wt
At e th

since the last term on the right hand side in the expression for » contains N-1.
This limiting process corresponds to increasing the size of the molecule, keeping
the size of the repeated unit constant. This leads to an infinite viscosity at
t = 0, whereas the measured viscosity of course is finite, but at the same time
the unnormalized probability of breaking some bond goes to infinity as
(N —1)w. Therefore the viscosity calculated using this approximation is infinite
at t = 0, but its rate of change is infinite also, and so the expression # ~ coth
wt/2 may be a useful approximation at some later time.

The reason for the inconsistency in the result derived above is that one
cannot let N go to infinity separately without changing M and w. What is
required is to go from the discrete model to a continuous model, ¢. e., & model
where the molecule consists of infinitely many repeated units with infinitely
small mass. We let N — o0 and at the same time M — 0 so that NM stays
constant. During this limiting process the number of bonds in a molecule goes
to infinity too, but since Nw is an observable quantity practically equal to the
rate constant in the first order expression for the disappearance of the initial
polymer, we must let w — 0 such that Nw stays constant (= a).

We therefore have

Oo e [N + 2N Z e~rwt . 2 Z ne-"wt
_,

w - 0 n=1

_ 2(at — 1 —i— o) (7)
at
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Table 1. @ as a function of y (eqn. 7).

Y 0.5 0.4 0.3 0.2 0.1
0.5 + 0.0000 0.3247 0.7101 1.1796 1.7720
0.0 + 2.5569 3.6733 5.4486 8.8732 18.9443
It is easily verified that y(0) = 1 as it should be. #(0) = — /3 which can

be used in fitting the expression to experimental data. For af )> 1 we have
y ~ t-! which is the result obtained by Hultin using the other limiting process.
When one wants to compare the theoretical result with experiments it is
convenient to introduce a dimensionless quantity @ = «f. In terms of this
we have
20 — 1469
= ot

8)

Table 1 is a tabulation of @(y) which can be compared with ¢(y) which one
gets from experiments and thereby give a determination of «. The data given
below for hyaluronic acid do not fit this expression.

So far we have only considered the case where the initial polymer is mono-
disperse. Although one can in general approximate this fairly well experimen-
tally, it would be interesting to study the case where one starts with an arbi-
trary initial distribution. We plan to return to this problem in a later publica-
tion, but we shall here briefly indicate how, in our mind, this problem best
could be attacked. Eqn (4) is rewritten as

'N
cp = 2Nwz ¢ 1%, — N-Y(k — 1) Nuwc,
t=k+1

and we see that in the limit N - o0, w - 0, Nw - « we can introduce the
continuous variable & = k/N such that ¢ = ¢ (&, t) satisfies the integral equa-
tion

1

de _ 2a f cdé — ake (9)
&

at
which can be rewritten as

—I— 5 + 3ac = 0 (10)

6§0t A&
after differentiation with respect to & To see the influence of an initial poly-
dispersity this equation is solved subject to the initial condition ¢(&, 0) = f(£)
where (&) is the molecular weight distribution at time zero.

The model discussed above is reasonable when we consider, for instance,
a thermal degradation of the macromolecule, since Pelzer has shown ! that
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for a linear chain the probability of breaking a bond by a unimolecular mecha-
nism is to a first approximation independent of the position of the bond in the
molecule and of the molecular weight. When we consider a catalyzed decom-
position it may no longer be a reasonable assumption. In particular when we
consider an enzymatic decomposition it is in all probability a poor approxima-
tion to assume that all bonds break with equal probability, since the enzyme
itself is a rather bulky molecule which has to be fitted onto a certain pattern in
the degrading macromolecule.

As mentioned above 7 there is experimental evidence that some polymers
break preferentially to give very large fragments. We shall now investigate a
model where this feature has been further simplified so that we consider mole-
cules which split exclusively in the middle.

Model 2

Assumption: The molecules split only in the middle.

Notation: ¢; is the concentration of the molecules with molecular
weight NM2-*
wy, is the probability that the k’th molecule will break.

2A. (trivial case) wk = w (all k)
We have

Cy = — WC, + 2WCy— (11)

It is convenient to use the generating function:

G(xt) = Z c, ()" (12)
since evidently y = G(Ti”t)' Multiplying the original differential equation with
powers of z and summing we get

.

o

i.e., G = oo(1-2)

— w(l — 22)G (13)

y = ool (14)

This case which is in itself without any interest shows the method we shall
use to get y directly from the kinetic equations in the more complicated cases.

We shall now let w; depend on k. For an enzymatic decomposition it is
reasonable to assume that this dependence is such that w; decreases when k&
increases, since supposedly the enzyme is one suited for decomposition of the
original macromolecule. By introducing this in the model we hope to be able
to account, for instance, for the rapid initial decrease in viscosity which is
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characteristic of the degradation of hyaluronic acid. The initial decrease during
which the excess viscosity drops to about one third of its initial value is

followed by a very slow decrease.

The simplest dependence is wy = w 27* (w being a constant) so that wy is
proportional to the molecular weight of the molecule to which it belongs. This
model therefore resembles model 1 somewhat, only here all the probability of

breaking a bond is located at one particular bond.
2B. Assumption: wy = w 27* (w constant)
This gives the following equation for c:
= — w 2%, + 2w 27F¥1g, 4
From this we get the equation for the generating function:

d

o G@t) = —w(l — 2x)G(~z~,t)

To solve this we use the Laplace transformation, introducing

e}

g(x,s) = f e G (x,t)di
0
We have ther.
z
s g(x,s) — 1 = — w(l — 2x)g(~-2-,s>
and making a power series expansion of g

e}
9@, 8) = > S,(s)a"
n=0

we get by comparing terms
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Transforming back we obtain

[e 0]
Yy = Z A”e-wl2" . ) (20)
) 1 1 1 1
W‘thA°“§"3-7+3-7-15*3.7.15.31+"' @1
and A, = 22 I_I “1‘1 A, (22)

Since A,+41/4, ~ 1/2, the series for y converges for all fixed £. It is convenient
to consider y as a function of ® = wt. We have

L, 1
[d@@0=_22 dy=— (23)

which can be used in fitting the theory to experimental data. Because of the
rapid convergence of the above series it is easy to calculate a sufficient number
of points.

It is interesting to note that this complicated expression gives values for
y(@) which almost coincide with those given by the expression derived for

model 2A, viz. y = exp(—% @). The slopes for @ = 0 are the same, and in

the range 1 <y << 0.35 the difference yg—y, is only 1—2 9%,. For smaller y
this difference increases rapidly, being about 20 9, for y ~ 0.2. This shows
clearly how accurately one must measure in order to be able to decide between
two models of this kind. Furthermore it shows that the last mentioned theory
does not give any abrupt change in y as we might have hoped.

If we want to keep the idea of molecules breaking in the middle only and
obtain the above mentioned abrupt change in viscosity we must change the
dependence of w, on k rather drastically. The only simple relationship we have
been able to find which gives a reasonable result is one where w, has a constant
value for all molecules above a certain size and another constant value for
molecules with smaller molecular weight. If we consider an enzymatic process,
this corresponds to an enzyme which has a selective catalytic effect on large,
resp. small molecules.|

Model 3

Assumptions: 1. Molecules break in the middle only
2. For molecules with a molecular weight > M * the rate-
constant is w;, for molecules with molecular weight < M*
the rate-constant is w,.
1 —
2 "
¢, is the concentration of molecules with molecular
weight NM2-*

Notation: Wy =
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3A. M*=gM

CO _ wlco
¢, = — wyey + 2wyc (24)
Cy = — WyCy + 2wyc,

etc.

We solve the first equation to get ¢, = e™* and use this to get an equation
for the generating function

O w1 — 2006 = — (w0, — w)(1 — 2o (25)
from which we get
G = —-—»—1—-:[(101——62)(1—2x)e“”l‘ + 2w1xe—(1‘2‘)5=‘:|
w;— (1—2x)w,
and (26)
Wy — 2w, . Wy ;
_ = —_— o 27)
y 2(wy—w,) o 2(wy —wy) 7)

3B. M* = % M

Using a similar technique we get:

Y = (ay + a t)e™* + be# (28)
with
an — wy— 2w, wy (W, —2w,)
07 2wy —w 4(w,—w,) 2
1— W) (wy—w, (20)
@ — wy (w;— 2w,)
1 4(w;—w,)

It is easy to see that the general form is

k
y = [Z ant”] o7 + bo (30)
n=0

for M* = NM2*1, The most important general feature of these equations
is that b is smaller the higher n is. If in these models we put w, ({ w,, ¢. e.,
if the selectivity of the enzyme is pronounced, we get a sharp change in y.

1 C . .
For model 3B this change occurs at y < e which is fairly close to what one can
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50 100 150 min

Fig. 1. Relative excess viscosity y as a function of time. The theoretical curve is
calculated from eqn. 28, and the points are the experimental results of Andersen and
Graae,

observe experimentally for hyaluronic acid. Fig. 1 shows the shape of the curve
using w; = 0.2019 and w, = 0.0130 and the experimental points of Andersen
and Graae 0. The values for w, and w, have been calculated from the experi-
mental data using an iterative least square procedure as described by Bond 15,
The agreement is not nearly as good as is the agreement with the empirical
formula suggested by Andersen and Graae, but the expression used here has
the advantage that it is derived from a specific model.

COMPARISON WITH EXPERIMENTAL DATZ2

Usually the viscosity of the polymer solution is measured with an Ostwald
viscometer, while the degradation is going on, and in that case if the measure-
ment takes 27 seconds, the measured *’viscosity’’ # is related to the true visco-
sity ¥ by the equation

1+T

i) = 5. [y + o) (31)
T

This equation is obtained by expressing the length of the capillary in the

viscometer in terms of z and y and equating the two expressions. If r is con-

stant, it is easy to find y from the given function 12 (¢). But unfortunately

7 is not constant, it is proportional to %, so that the equation reads

1 +k17
0 = 3 [ v+ o (32)
—kn

We have not been able to solve this equation, but by finding # using different
expressions for ¥ we have been able to estimate the error one makes in using
n for y. In the experiments published by Andersen and Graae the error (for
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y ~ 0.52, 1 ~ 6 min.) is approximately 2 9, for the most reasonable shapes of
y = y(t). Fort — 0 the error becomes very large. Even within the measurable
range the error can amount to about 10 9. '

If experimental data have to be corrected by some iterative procedure
using the above integral equation, they have to be extremely accurate in order
that one may draw any conclusions whatsoever from the corrected data, and
we believe that no such data have been published so far.

If one could measure the viscosity in such a way that each measurement
took the same time, or if the measurements were almost instantaneous such
as for instance is the case in the Couette viscometer, the correction would be
much easier, and in the latter case actually superfluous.

As mentioned above, we have tried to fit the expression derived for model
3B to the uncorrected data given by Andersen and Graae; Fig. 1 shows the
agreement obtained. Not too much importance should be attached to the
experimental points for small ¢ (where the correction is large) nor to the values
for large ¢ (where transglucosidation may be the dominating reaction).

It is easy to make a better fit by adding an extra term or by letting the pre-
exponential factors be parameters which can be varied to get a better fit, but
these additions would not be explicable in terms of a molecular mechanism.

APPLICATION OF THE THEORY TO CATALYZED PROCESSES

So far we have assumed that the degradation can be described in terms of
monomolecular rate constants w;. When we consider a thermal degradation
this seems very reasonable, but it is not at all clear that the same considerations
apply to a reaction catalyzed for instance by an enzyme.

In order to see to what extent it may still be a good approximation we shall
have to consider the detailed mechanism of the enzymatic degradation. We
consider the simplest possible mechanism:

P,+ E = E, (rate constants k5 and k)
E, » P, + P, + E, (rate constant k)
where P, is a polymer with n basic units (m 4 | = n)
E, is the enzyme
E, is a molecule of composition E,P,
Using steady state kinetics !* we have readily:

2N ky\ 1 1
B 3= (1 + k) P T (33)

letting [P,] denote the concentration of P, and [E] denote the concentration
of E, + E,.

If k,j is large, so that the last term on the right hand side is small, we have
a first order degradation of P,. Furthermore, since in this case the concentra-
tion of E, is low, only very small amounts of the enzyme is bound in the
substrate-complex, and the different first order degradations of P-molecules
are therefore effectively independent. In that case the previous considerations
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therefore are valid, and a ’local stationarity’’ exists in which all the separate
first order reactions are in steady states, but not in steady states with respect
to each other.

If kyg is small so that the term k,3~! cannot be neglected, one will usually
find that the first term is negligibly small 14, and that the concentration of E,
is comparatively high. In that case, therefore, the degradation of the macro-
molecule must be considered as a large number of zero order reactions com-
peting to form complexes with the enzyme, and thereby degrading P-mole-
cules. In this case, as in the rare case where both terms will have to be con-
sidered, the previous considerations are not valid.

‘We are indebted to professor J. A. Christiansen for encouragement and advice and to
Mr. A. E. Nielsen for pointing out an error in the first draft of the manuscript. K. B.
gratefully acknowledges financial support from Det teknisk-videnskabelige Forskningsraad.
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