Bifunctional Amines and Ammonium Compounds

VI. * Further Homologs and Analogs of bis-Choline Ether Salts

JØRGEN FAKSTORP and JYTTE CHRISTIANSEN

Aktieselskabet Pharmacia, Copenhagen-Vanløse, Denmark

As an extension of earlier work twelve aliphatic bis-alkylammonium alkyl ethers, representing different chain-lengths, distribution and size of N-substituents, and chain branching, are reported together with twenty-four quaternary salts. Six aromatic ethers are reported along with eight bis-quaternary and three mono-quaternary salts derived therefrom. Transformation to non-halide salts is discussed. Alkylation of bis-(2-dimethyl-2'-diethyl)-aminoethyl ether with various alkyl halides gave ten different quaternary salts, which are reported.

In the current investigations on the relation of structure to pharmacological activity in an extended series of bis-ammonium salts, the need arose for salts representing further extensions on the structural theme exemplified by bis-choline ether. A number of such variations have been reported earlier from this laboratory ¹⁻⁴.

The present paper reports twelve additional bis-tertiary aliphatic ethers, representing variations in chain-length, degree of asymmetry, size of N-substituents and chain-branching (Table 1). These ethers were obtained essentially as described earlier. They were prepared, in most cases, from known aminoalcohols or aminoalkylhalides, respectively.

This paper further presents six bis-tertiary ethers having an aromatic ring system in the chain (Table 2). The bis-tertiary ethers have been transferred to their corresponding methiodides and ethobromides or ethiodides, respectively. The twenty-four salts corresponding to the aromatic ethers are shown in Table 4. The quaternary salts were obtained by conventional procedures.

The substituted choline phenyl ethers are formed with considerable difficulty, and in several cases only the mono-quaternary salt (retaining the tertiary amino group on the aromatic ring) was obtained. Three such mono-quaternary salts are shown in Table 5.

^{*} Part V. Acta Chem. Scand. 10 (1956) 15.

			m			(a)	6	က	00	<u> </u>	9					<u></u>	<u>ت</u>
			others	14.1	14.87	99.8a	12.2	100.3			100.6	97.3	98.6	98.2	99.4	14.49	12.95
		Found	0	Z	z	闰	Z	田		Z	田	田	田	闰	田	Z	z
		For	H	12.21	12.64		12.45		11.97	12.22	11.32	1	1	12.82	12.54	12.91	12.83
		iis, %	၁	63.04	60.55		64.35		64.33	13.07 67.01 12.22	13.19 67.90]]	16.08 61.70 12.82 E	13.85 64.70	14.89 63.79 12.91 N	12.95 66.40 12.83
		Analysis, %	others	14.88	16.08		13.85		15.04	13.07	13.19	13.85	12.95	16.08	13.85	14.89	12.95
			ot	Z	z		Z				Z	z	Z	z	z	Z	z
		Calc.	Н	12.85	12.72		12.95		11.90	12.23	11.39	12.95	13.04	12.72	12.95	12.85	13.04
			ပ	63.78	62.02		65.29		64.47	67.24	67.88	65.29	66.61	174.28 62.02 12.72 N	65.29	188.31 63.78 12.85 N	66.61
	R R	×		188.31 63.78 12.85 N 14.88 63.04 12.21 N 14.13	174.28 62.02 12.72 N 16.08 60.55 12.64		202.33		186.29 64.47 11.90 N 15.04 64.33 11.97	214.34 67.24 12.23 N	212.33 67.88 11.39 N	202.33 65.29 12.95 N	64	_			216.36 66.61 13.04 N
	CH ₂) _n —N<	Emp.	emili for	$C_{10}H_{24}N_{3}O$	C,H.,N,O	: :	$C_{11}H_{26}N_2O$ 202.33 65.29 12.95 N 13.85 64.35 12.45 N 12.29	: }	$C_{10}H_{22}N_2O$	C12H26N2O	C12H24N2O	C11 H26N20	C12H28N20	0,N22H2	0,NH2,N20	C10H24N2O	$C_{12}H_{28}N_2O$
e 1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Yield	0		64		12		40	30	22	12.3		55	29	42.1 C	37.9
Table 1.			ЭE	13	œ		∞		25	25	15	12	13	18	17	120 25 30	63
		B.p.)	82—85	8182		103		121 - 124	140 - 144	150-151	106-110	115-118	68	110-111	115-120	95
		- E			_		-		_	_	_	_	_	63	67	63	62
					_		_		_	_	_	_	_	_	_	23	C 3
				CH,	CH,	•	C,H, 1		CH,	C,H,	C_{H_a}	HC,	CH,	CH,	CH,	CH,	C_2H_b
		R		CH,	CH,	•	C,H,	•	CH,	C,H,		CH,	CH,	CH,	CH,	CH,	C_2H_5
		H.		CH,	H H CH,		H		H	H	Н	Ħ	H	H	Ħ	H	H
	•	R.		CH,	H		H		H	H	H	H,	H	H	H	H	н
		R		CH,	$C_{\mathbf{H}_{\mathbf{k}}}$	•	C_sH_s		$C_{\mathbf{H}_{\mathbf{k}}}^{\mathbf{H}_{\mathbf{k}}}$	H,	$C_{\mathbf{H}_{\mathbf{s}}}$	n.C,H, H	n-C,H,H				CH,
		A		CH,	CH,	•						C,H,	C,H,	ĊH,	C,H,	CH,	CH,
		Code	0	Asa. 85 CH.	Asa-120 CH.		\sa-121 CH3		Asa-122	Asa-123	Asa-124	Asa-135 C.H.	Asa-136	Asa-165 CH.	Ase-166	Asa-167 CH,	Asa-178 CH3

a) E: Percent base by perchloric acid titration, b) pyrrolidino,

يُّم	المراجعة المراجعة
	'H.
	СН2СН2
_	
_ 2	//
R.	R_1

	others	11.26					2.96		99.65
ρι		Z	_	_		z	Ħ	Z	P
Found	H	10.13	10.27	l	l	9.63		10.22	
Analysis, %	C	71.14	72.21	į	-	69.35		70.90	
Analy	others	11.85	10.60	11.85	13.45	13.45		11.85	
:					Z			Z	
Calc.	Ħ	10.24	10.66	10.24	9.68	9.68		10.24 N 11.85	
	၁	71.14	72.68	71.14	69.19	69.19		71.14	
×	-	236.35	264.40	236.35	208.30	208.30		236.35	
- 4				_			_	_	
Emp.		$C_{14}H_{24}$	C16H28	$C_{14}H_{24}$	$C_{12}H_{20}$	C12H20N2O		$C_{14}H_{24}N_{2}O$	
Yield	9	6.69	62.1	42.1	48.9	20		32	
Press.	Hg	67	2.5	67	18	50		18	
B.p.	,	155	158	140	169—73	178—80		185—86 18	_
Posi-		u u	m	ď	ď	u		w	
R ₂		CH3 a)	C ₂ H ₅ b)	C,H	CH3	CH3		C_2H_b	
R ₁		C,H,	C_2H_5	CH3	CH,	CH		CH3	
Code No.		Asa-129	Asa-130	Asa-133	Asa-134	Asa-142	-	Asa-143	

a) bis-HCl(As-12935), m.p. 184°C. Found Cl 23.01; calc. for C₁₄H₂₆N₂OCl₂ (309.28) Cl 22.93
 b) bis-HCl(As-13036), m.p. 187°C. Found Cl 21.32; calc. for C₁₆H₃₀N₂OCl₂ (337.33) Cl 21.02.

	,0	Found	55.10 55.00 55.00 55.00 55.00 37.15 37.15 36.91 36.91 36.91 36.91 36.91 36.91 36.91 36.91 36.91 37.88 36.91 36.91 37.88 37.88 37.88 37.88 37.88 37.88 37.88 37.88 37.88
	is ,0	Fo	
	Analysis,%	Calc.	53.76 55.40 55.40 55.20 55.20 55.20 55.20 55.20 55.20 55.40 55.20 55.40 55.20 55.40
		ت	
	M		472.21 I 466.27 Br 456.24 I 486.24 I 470.19 I 470.29 Br 496.20 I 430.29 Br 486.24 I 430.29 Br 486.24 I 430.29 Br 486.24 I 430.29 Br 486.24 I 430.29 Br 486.24 I 430.29 Br 420.29 Br 420.29 Br 458.18 I 430.24 Br 458.18 I 458.23 I 466.27 Br 660.26 I 660.26 I 660.26 I 660.26 I 660.26 I 660.26 I 660.26 I 660.26 I 660.26 I
	Emp.	TOLITIMIS	C12 H 30 N 2 O L C14 H 30 N 2 O L C15 H 30 N 2 O L C16 H 30 N 2 O L C17 H 30 N 2 O L C17 H 30 N 2 O L C18 H
× × × ×	Yield o/	<u> </u>	84 66 66 66 66 66 100 100 69 65 65 67 87 87 87 87 87 87 87 87 87 87 87 87 87
H ₂) _n N—F	Crystall.	Troili ",	dil. A E. A E. W E. W A dil. A dil. A e dil. A dil. A dil. A dil. A e dil. A dil. A dil. A dil. A e dil. A dil. A e dil. A dil. A e dil. A e e e e e e e e e e e e e e e e e e
R_1 R_2 R_3 R_4 R_5 R_5 R_5 R_5 R_7 R_7 R_7 R_7 R_7 R_8 R_8	M.p.	٥	128—130 dil. A 98—100 E-A 290—272 E-W 268 A 245 A 255—256 — 233 — 244—246 — 196 E 172—180 E-A-EE 196 E-A-EE 204—206 — 196 E 172—180 E-A-EE 204—206 — 196 E-A-EE 204—206 — 204—206 — 205—206 — 206—206 —
$ m I_{2)_m}$	п		
Y(CE	8		
R. R.	×		<u> </u>
ж., ж	. A		######################################
	ಸ್ಟ		
	- R		<u> </u>
	2		пининининининининининининининининининин
	ಜ್ಜ	,	нанининининининининини
	Ä		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	R ₁	'	555555555555555555555555555555555555
	Code	INO.	As-8558 As-8559 As-12045 As-12046 As-12046 As-12036 As-12203 As-12203 As-12487 As-12487 As-13670 As-13677 As-16677 As-16677 As-16776 As-16776 As-16776 As-16776 As-17843

A: acetone; E: ethanol; W: water; dil. A. 70 % acetone dil.w.water; EE: ethyl ether; M: methanol; iso-Pr: isopropyl alcohol.

Acta Chem. Scand. 11 (1957) No. 10

Table 4.

Code No.	R1			Yield %	Emp. formula	M	Analy Calc.	sis, % Found			
As-12982 As-13030 As-13345 As-13346 As-14235 As-14213 As-14340 As-14310	C ₂ H ₅ C ₂ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ C ₂ H ₅ C ₂ H ₆ C ₂ H ₆ CH ₃ CH ₃ CH ₃ C ₂ H ₆ C ₂ H ₆	CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₃ C ₂ H ₅ CH ₃ C ₄ H ₅	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	m m p p m m m m m m m	186 158 200 188—90 188—94 115 175—76 153—56	80 40 83 77 67 48 74	C ₁₆ H ₃₀ N ₂ OI ₂ C ₁₈ H ₃₄ N ₂ OI ₂ C ₁₆ H ₃₀ N ₂ OI ₂ C ₁₆ H ₃₀ N ₂ OI ₂ C ₁₆ H ₃₆ N ₂ OI ₂ C ₁₈ H ₃₄ N ₂ OI ₂	520.26 548.31 520.26 548.31 492.20 520.26 520.26 548.31	I 48.79 I 46.29 I 51.57 I 48.79 I 48.79	I 48.31 I 45.28 I 48.03 I 45.75 I 50.25 I 48.75 I 48.23 I 46.17

Among the bis-quaternary salts described in the second paper of the series ¹, high ganglion blocking activity was found in the asymmetric compound N,N,N,N'-tetraethyl-N',N'-dimethyl-3-oxa-pentane-1,5-diammonium di-bromide (As-4179) ⁵. Because of the toxic nature of the bromide anion, it was of importance to study other salts of the biologically active ion. A number of such salts have been prepared or their preparation attempted. Most of them were not useful in that they were either deliquescent, or contained toxic anions (Table 6). One of the few salts which seemed to be of interest, was the acid tartrate (As-4137) *. This salts has been the basis of further pharmacological and clinical work ⁶,⁷.

The tartrate and the other salts were available by addition of the appropriate acid to a solution of the free alkyl ammonium hydroxide. A number of methods for the transformation of the direct products of quaternization, bromide, iodide or alkyl sulfate, into salts of any given anion have been in-

Table 5.

$$(R_1)_2N$$
 OCH₂CH₂N $(R_2)_2R_3$,X-

Code No.	R_1	R_2	R ₃	x	М.р. °С	Emp. formula	М	Analy Calc.	sis % Found
As — 12932 As — 12933 As — 13031	C_2H_5	CH ₃	$\mathrm{CH_3} \\ \mathrm{C_2H_5} \\ \mathrm{C_2H_5}$	I Br Br	190 98 135	${^{ ext{C}_{15} ext{H}_{27} ext{N}_2 ext{OI}}_{ ext{C}_{16} ext{H}_{29} ext{N}_2 ext{OBr}}}{^{ ext{C}_{18} ext{H}_{33} ext{N}_2 ext{OBr}}}$		I 33.55 Br 23.14 Br 21.35	Br 23.05

^{* &#}x27;Oxaditon' (Regd. Trade Mark).

Table 6.

Code No.	Anion	M.p. °C	Crystall.	Emp. formula	M	Analysis	Remarks
As-4194 As-4193	maleate carboxymethyl-	164	м-А	$\mathrm{C_{22}H_{40}O_9N_2}$	476.3	E _p : 94.24 b)	deliquescent
	theophyllin	210	not	${ m C_{32}H_{52}O_9N_{10}}$	720.5	N calc. 19.52 found 19.41	decomposes when recryst.
As-4120	cinnamate	110-114	M-A	C ₈₂ H ₄₈ O ₅ N ₂	540.7		oil after recryst.
As-4127	retene-3-sulfonate	115	E-A	C50H74O7N4	871.2	N calc. 3.2	
						found 3.05	
As-4182	bis-OH-naphthoate	272 d	not	$C_{38}H_{60}O_{13}N_{2}$	618.4	Ep: 100.6	
As-4176	perchlorate	220 d	EW	$\mathrm{C_{14}H_{34}O_{9}N_{2}Cl_{2}}$	445.1	N calc. 6.30	
	_					found 6.19	
As-4101	D-camphorate	200		$\mathrm{C_{34}H_{64}O_5N_2}$	588.6		deliquescent
As-4122	fumarate	230		$\mathrm{C_{22}H_{40}O_{9}N_{2}}$	476.3	P .	oil after recryst.
As-4178	monohydrogen	184	E-W	$C_{22}H_{44}O_{13}N_{2}, 2H_{2}O$		C calc. 45.51	
	tartrate					found 45.66	
						H calc. 7.63	
	:					found 8.18	
						N calc. 4.83	
						found 5.07	

a) cf. footnote to Table 3.

vestigated. This examination shows the need for still better methods, when commercial production is contemplated and yield and other operational factors become critical. The hydroxide solution can be had by ion exchange, using a strongly basic resin (e.g. "Amberlite IRA-400")*, by hydrolysis of etho-

 $Table~7. \\ + \\ X^-, R(CH_3)_2NCH_2CH_2OCH_2CH_2N(C_2H_5)_2R, X^-$

Code No.	R	x	M.p.	Recryst.	Yield %	Emp.	м	Anal Found	ysis, Calc.
	1				1 /0				
As-4144	CH ₃	CH ₃ SO ₄	143	E-EE	70	C14H36N2O9S2	40.56	N 6.15	N 6.36
As-4124	C_2H_5	C2H5O4	88-90	iso-Pr-EE	75	C18H44N2O2S2	496.67	N 5.63	N 5.64
As-4107	n-CaH,	\mathbf{Br}	16466	E-A(1:1)	26	C ₁₆ H ₃₈ N ₂ OBr ₂	434.28	Br 36.36	Br '36.80
As-4101	n-C4H9	\mathbf{Br}	138-40	E-A(1:1)	13	C18H42N2OBr2	462.37	Br 34.82	Br 34.57
As-4147	n-C5H11	\mathbf{Br}	110	E-EÈ	20	C20H46N2OBr2	490.23	Br 32.21	Br 32.60
As-4148	n-C6H13	\mathbf{Br}	15860	A-E(5:1)	10	C22H50N2OBr2	518.47	Br 30.20	Br 30.83
As-4149	n-C2H15	\mathbf{Br}	120	E-EÈ		C24H54N2OBr	546.52	Br 28.90	Br 29.25
As-4159	C.H.OH	\mathbf{Br}	194	${f E}$	50	C14H34N2O3Br2	438.26	Br 36.18	Br 36.47
As-4182 II	C_3H_5	\mathbf{Br}	118-24	E-A(2:1)		C16H34N2OBr2	430.27	Br 36.67	Br 37.15
4s-4182 IV	$\mathrm{CH_2C_6H_5}$	Cl	18586		21	$C_{24}H_{38}N_2OCl_2$	441.47	Cl 15.98	Cl 16.06

a) cf. footnote to Table 3.

Acta Chem. Scand. 11 (1957) No. 10

b) Purity 0/0 by perchloric acid titration.

^{*} Regd. Trade Mark of Rohm & Haas Co., Philadelphia, Penn. U.S.A.

sulfate according to Barber and Gaimster ⁸, by addition of propylene oxide to an aqueous solution of the quaternary bromide and the desired acid (cf. Sackur ⁹). A special method for transformation into chloride is that of Phillips and Baltzley ¹⁰. The use of double decomposition with salts of aromatic acids was also explored. Since the sodium salt of retene-3-sulfonic acid is soluble, while the potassium salt is not, it was hoped that an insoluble salt of the bisquaternary ion would form with this acid. This was, however, not the case. Similarly no sparingly soluble salt is formed with 2,2'-dihydroxy-1,1-dinaphthylmethane-3,3'-dicarboxylic acid (Barner and Gaimster's ¹¹ "embonic acid"). Sparingly soluble salts were obtained, however, with 2,2'-dihydroxy-1,1'-dinaphthyl-3,3'-dicarboxylic acid ("bis-hydroxy-naphtoic acid") and with 4,4'-diamino-stilbene-2,2'-disulfonic acid as disclosed by Slack ¹². Tartaric acid expels these weak acids from their salts in the form of the insoluble free acid.

In view of the interesting pharmacological results obtained with the simple quaternary salts of the asymmetric base, bis-(2-diethylamino-2'-dimethylamino)-ethyl ether (Asa 41), it appeared of interest to prepare some salts containing higher alkyls as N-substituents. These salts were obtained in conventional fashion and are shown in Table 7.

Attempts to prepare the "totally asymmetric" 2-trimethylammoniumethyl-2'-triethylammoniumethyl ether by various routes were unsuccessful. In several cases N-dialkyl morpholinium ions, however, were obtained from the reaction mixtures.

EXPERIMENTAL *

Bis-tertiary amino ethers. With the exceptions mentioned below these substances were obtained simply by Williamson ether condensation of the appropriate tertiary amino alcohols resp. amino halides as described earlier ¹.

Bis-(2-ethylmethyl-2'-dimethyl)-aminoethyl ether

- a) Bis- (2-ethyl-2'-dimethyl) -aminoethyl ether. Twenty-three grams of sodium (1 mole) was dissolved by heating in a solution of 90 g of N-ethylethanolamine in 800 ml dry toluene. Condensation with N-dimethyl-aminoethyl chloride prepared in situ from 144 g (1 mole) of the corresponding hydrochloride. After removal of sodium chloride and toluene the residue is distilled in vacuum to give 10 g of oil, b.p. $87-95^{\circ}$ C/20 mm Hg. (Found: N 16.41. Calc. for $C_8H_{20}N_2O$ (160.6): N 17.48). Purity (by perchloric acid titration) 98.0° C/
- 98.0 %.

 b) Methylation of (a) (Eschweiler-Hess procedure) (Asa 120). To 49 g (0.3 mole) of the amine in a flask is added 45 g of 85 % formic acid (0.6 mole) at such a rate that the temperature never exceeds 60°C. After cooling to room temperature 11 g of 37 % formalin is added at once. The mixture is heated to approximately 60° at which temperature an exothermic evolution of CO₂ begins. After this has subsided the mixture is refluxed for 3 h. The mixture is made just acid with 4 N HCl and air blown through for 1 h for removal of volatile products. More HCl is added and the mixture is evaporated in vacuum till the residue is semisolid. After addition of a large excess of NaOH extraction with ether, 200 ml, three times. The residue from the dried ether is distilled. Yield: 34 g (64 %). See Table 1 for analytical data.

Bis (2-ethylmethyl-2'-diethyl)-aminoethyl ether is obtained in essentially similar fashion from the intermediate bis (2-ethyl-2'-diethyl)-amino ethyl ether (b.p. 120°C at 20 mm Hg).

^{*} All melting and boiling points are uncorrected. The nitrogen and halogen values are semi-micro determinations by Mrs. G. Speggers and her staff. Carbon and hydrogen values are micro determinations by Messrs. W. Egger and P. Hansen, University of Copenhagen.

Bis-(2-ethyl-n-propyl-2'-dimethyl)-aminoethyl ether (Asa-135)

From 32 g (0.2 mole) of bis-(2'-ethyl-2'-dimethyl)-aminoethyl ether and 25 g of n-propylbromide in iso propanol. Yield 5 g (12 %). See Table 1 for analytical data.

By substituting 27.4 g of n-butylbromide for the propyl bromide in the procedure given immediately above one obtains the corresponding bis-(2-ethyl-n-butyl-2'-dimethyl)-aminoethyl ether (Asa-136). Yield 6 g (11 %). See Table 1 for analytical data.

Acknowledgement. The authors are pleased to acknowledge a gift of retene-3-sulfonic acid from professor H. Lund, University of Århus, Denmark, and a generous sample of N-ethylaminoethanol from Carbide & Carbon Chemicals Corporation, Geneve, Switzerland.

REFERENCES

- 1. Fakstorp, J., Christiansen, J. and Pedersen, J. G. A. Acta Chem. Scand. 7 (1953) 134.
- 2. Fakstorp, J. and Christiansen, J. Ibid. 8 (1954) 346.
- Fakstorp, J. and Christiansen, J. Ibid. 8 (1954) 356.
 Fakstorp, J. Ibid. 10 (1956) 15.
- 5. Fakstorp, J. and Pedersen, J. G. A. Acta Pharmacol. & Toxicol. 10 (1954) 7.
 6. Fakstorp, J., Poulsen, E., Richter, W. and Schilling, M. Ibid. 11 (1955) 319.
 7. Harvald, B. Ugeskrift. Laeger 117 (1955) 580.

- 8. Barber, H. J. and Gaimster, K. J. Pharm. and Pharmacol. 3 (1951) 663.
- Sackur, O. Bull. Soc. Chim. [5] 19 (1952) 796.
 Phillips, A. P. and Baltzley, R. J. Am. Chem. Soc. 14 (1952) 5231.
- 11. Barber, H. J. and Gaimster, K. J. Appl. Chem. London 2 (1952) 565.
- 12. Slack, R. Swedish Patent No. 153262.

Received August 14, 1957.