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Fractionation of Polymers by Liquid-Liquid Distribution

I. Theory

KARL ERIK ALMH?*‘
|

Swedish Forest Products Research Laboratory, Papmi Technology Department,
Stockholm, Sweden

Equations for the calculation of molecular frequency functions of
polymers from counter current experiments are deduced provided that
1deal conditions prevail.

r[‘he method of fractionating polymers by distribution between two immiscible
solvents was first applied by Schulz and Nordt!. By shaking a water
solution of polyglycol with mixtures of chloroform and benzene of different
composition they obtained a number of fractions of different molecular
weights. The volume ratio of the two phases was kept very high.

The theory of the process was first treated by Brensted 2. On the basis
of the assumption that in chemically similar materials the potential energy
of the molecule is proportional to its magnitude he deduces the formula

k = exp 1% (1)

where k = partition coefficient, P = degree of polymeriration and ¢ is a
constant dependent of the composition of the solvent system. By experi-
ments Schulz ® found that a simple relation exists between the constant e
and the composition of the solvent system. By applying these laws Schulz
and Nordt ! could conclude that the efficiency of separation is improved by
increasing the volume ratio of the two phases. The conclusion which was
drawn from these investigations is that fractional precipitation can be con-
sidered more efficient, as in the latter case the volume ratio of the two phases
is much higher than can be attained in practice at distribution between two
solvents.

By the use of statistical thermodynamics several equations have been
derived to account for the activity of polymer solutions. (For a review see
e.g., Ref.4). These equations confirm at least qualitatively the results of
Schulz and Nordt 1.
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As was pointed out by Almin and Steenberg 5 the liquid-liquid distribu-
tion method as carried out by Schulz and Nordt suffers from the same weak-
ness as the solution and precipitation methods, as to the calculation of the
molecular frequency function from the experimental data. By keeping the
composition of the solvent system constant at all steps of the fractionation
and compensating for the decreased fractionation effect by a method of
multiplication, data can be obtained, making it possible to carry out the cal-
culations in a theoretically correct way.

The scope of this work is to make use of this by distributing polymers
between two immiscible sol¥ents according to the Craig counter current method.

‘i
FREQUENCY CURVES WITH RESPECT TO PARTTION COEFFICIENT

When a pure substance is distributed between two solvents in a Craig
distribution apparatus according to the fundamental procedure 8, the amount
of substance present in the pth tube is

4
w(p):m"'(Z)'(k——’r—Ty’ (=012, ......7) 2)

where m, is the total amount of substance added to the apparatus and %
is the partition coefficient for the substance between the phase to be trans-
ferred and the stationary phase, n being the number of transfers. Equal volu-
mes of the two phases are presupposed. If the substance contains molecules
of different partition coefficients and the weight frequency function with
respect to partition coefficients is f(k), the amount of those molecules which
have a partition coefficient in the range between % and %k + dk in the pth
tube is

dulp) = my (1) + oy 1) - b

p) &+ 1
or
_ M _ (Y. __* .
Wi =i = 1) g 00 @

W ,.(p) is the weight fraction of the original substance present in the pth tube.*

The condition precedent for the validity of this formula is that no interac-
tion of molecules of different size occurs and that the partition coefficient is
independent of concentration. Of course it is a prerequisite that the presence
of the polymer does not cause a change in the composition of the solvents,
and that real equilibrium conditions are fulfilled.

As W(p) is known from experiments the integral eqn. (3) can be solved
with respect to f(k) according to some approximation method. The author has
adopted the following method for the solution of the equation.**

* When confusion is out of question the index n of Wy (p) will be omitted.
** By access of an electronic computor somewhat different treatment of the problem is
conceivable.
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It is considered that the frequency function f(k) can be expressed as a
sum of several functions y(k):

fle) = Z i (k)

The functions y; are chosen so that 1) they are bell shaped and = 0 for £ = 0
and oo, 2) the integral

©/n I
J(p)'m'we (k) - dke

can be expressed by elementary functions. These conditions are fulfilled if,
eg.,
vi (k) = Ai- k- (k41)" - exp(—ai - k%) (4)

where 7;, 8;, 4; and a; are properly chosen numbers. For the sake of simplicity
r;, 8; and a; ought to be integers and if possible si shall be put equal to 1. For
the special case s; = 1 one obtains

i)!
W) = ;) 24 gt ®

By trial and error it is posssible to find values of 4;, a; and 7; to have the
calculated and the experimentally determined W(p) values agree. This can
be done in a systematic way.

The method will be explained by a fictive experiment. A polymer is assu-
med to be defined by the frequency function .

f(k) = 5.784 X 105kt (k+1)1°. exp (—27 - k?) (6)

The corresponding curve is drawn in Fig. 1. If this preparation is distributed
in a 20-tube countercurrent distribution apparatus (» = 19) one obtains in
accordance with eqn. (3)

2p+-9)!
W(p) = 1.157 X 106-(2—5%% )

The W(p) values calculated from this formula are listed in Table 1.
Starting from these values f(k) shall be calculated considering that it can
be expressed by a sum of functions of the type

A - k(k 4 119 - exp(— ak)

From the table can be seen that W(p) has its highest value for p = 11. A
preparation with a frequency function of the type mentioned has its highest
W(p) value for p = 11 when a = 9. The difference

awey = wp) —a,- (1) G ®)

gp+2
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Table 1.
W (p) A W (p) 4 W (p)
P (Eqn. 7) (Eqn. 8) (Eqn. 9)
0 0.0020 19 x 10-4 —1x10-¢
1 0.0058 54 3
2 0.0113 100 5
3 0.0184 153 4
4 0.0274 205 0
5 0.0386 247 -3
6 0.0519 267 —4
Vi 0.0669 263 -1
8 0.0826 202 2
9 0.0972 124 3
10 0.1083 47 2
11 0.1130 0 0
12 0.1091 3 —1
13 0.0959 48 0
14 0.0751 100 0
15 0.0509 123 -2
16 0.0286 104 —4
17 0.0125 61 —4
18 0.0038 23 —1
19 0.0006 4 0
Z =0.9999 j | S = —2x10*

is calculated assuming such a value of 4, that the difference = 0 for p = 11
(¢.e. where W(p) is maximum). As can be seen from the table this difference
has its highest values for p = 6 and p = 15. The new difference

" 19 A7 A Ag
AW (p)" = W(p)— (p) s (p+1) - [99:2 + 16"12 + 5‘,.32]

is calculated assuming such values of the A”-s that 4 W(p)” = 0 for p = 6,
11 and 15. (It shall be borne in mind that the two last terms within the paren-
thesis have their highest values for p = 6 and 15, resp.) When the difference

19y (p+1)!
pl]  9p¥3

is now calculated, it is found that its highest values occur when p = 7 and 14.
This means that the choice of the two last functions was not appropriate.
Thus a new attempt is made with functions which give their highest W(p)
values for p = 7, 11 and 14. This procedure is now repeated until agreement
is attained at least in the tubes containing the chief part of the preparation.
In this case it is found that this new approach gives good agreement exept
for p = 1, 2 and 3, but by further subtraction with an expression of the type

19} (p+1)!
ac () Gor

AWEY" = Wp)— Al - (
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Fig. 1. Comparison between theoretical
and calculated frequency curves.
Frequency curve according
to eqn. 6.
————— Frequency curve according [
to eqn. 10. 0 N R .
0 1.0 20 0 k 40

(this expression has its highest value for p = 2) good agreement is obtained.
In column No. 4 of Table 1 the difference

19 4441108  5.934x10°3
AW @) =W<p)—(p)-<p+1>z-[ tLSLAIL L s LA

3.550x 101! 1.4x102
149+2 25p+2

(9)

is calculated. As can be seen, the differences can be regarded as small in
comparison to experimental errors in a real experiment. If the amount of
original substance had been 1 g, no error exceeds 0.5 mg. These calculations
thus lead to the conclusion that the frequency curve can be expressed by

fo(k) = k- (k+1)19. [4.441 X 10-8. oxp(— 6k) + 5.934 -+ 10~2. exp(— 9k) +
3.550 X 10-1- exp(— 14k) + 1.4 X 10-2. oxp(— 25k)] (10)
The corresponding curve is drawn in Fig. 1. The agreement with the theoretical
curve must be regarded as good.
In this connection it seems justified to mention that the moments of the

frequency functions can easily be obtained from the data of experiments of
this type. According to definition the ¥th moment about the origin is

—F ety -ake=1 2o oy e =3 (™). T 2 iy ak =
= peetr-ae= 2T s a= £ O) i 0-a

3 0

=2 VL W(pt) = pit-dpy (11)
p:-o( n )
P+
n
where ' =”§, —~(£2— - W(p+v») (12 a)

o)
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n
and Ay — M_im é;’:—)—) W (p+v) (12b)
. ,

Although uj can be calculated from the experimental W(p) values, duy
cannot because all terms in this expression are of the indefinite form 0/0.
Thus the calculation of the moments cannot be done completely and it can
only be regarded as justified if Auy is a small number in comparison to us.
In any case calculation of moments of high order cannot be done with any
accuracy. In Table 2 the first three moments are calculated for the curve
given in eqn. (6) and compared to those calculated from the W(p) values
given in Table 1. As can be seen from the table the accuracy diminishes as
the order of the moment increases.

o

Table 2.

Moment calc.

Order of moment | Theoretical moment from eqn. 12 &

1 1.366 1.364
2 2.450 2.40,
3 5.369 4.90, |

The fitting of the frequency curve by the method of moments as for instance
developed by Pearsom (see, e.g., Ref.”) can of course be done, but this method
presupposes a frequency function of only one mode. If the frequency curve
contains more than one peak this method will fail. With the first one
given, however, more details can be detected.

As far as the author knows no mathematical analytical method exists to
determine (calculate) the accuracy of the frequency curve. It is quite evident
that a very sharp peak in the curve cannot be detected only by mathematical
means. This can only be done by changing the experimental conditions so
that the resolving power of the distribution apparatus is increased, e.g. by
increasing the number of fractions or choosing another solvent system.

The result is no doubt dependent on the mathematical method chosen
for the calculations. In the method adopted by the author it is considered
that the frequency function can be represented by a sum of a limited number
of functions of a special type. It is of course not certain that this approach
is correct, but as long as it is not unreasonable it must be considered justified.
The only possibility to check the results is to vary the experimental conditions
and to test whether the same result is obtained when the resulting frequency
curve in respect to distribution coefficient is converted into a molecular
frequency curve. Negative 4 W(p) values should of course be avoided at
early stages of the calculations.
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RELATION BETWEEN MOLECULAR WEIGHT AND PARTITION COEFFICIENT

When the frequency function with respect to the partition coefficient in
a certain solvent system is known, it remains to determine the relation
between the partition coefficient and the molecular weight before the molecu-
lar frequency function can be determined. The fractionation method suggest-
ed in this paper is not selective and thus the procedure will depend upon
the way and method of measuring molecular weights. As was pointed out

by Almin: and Steenberg 5 the average molecular weight M(p) in fraction
No. p can be written

@) = o (”) T k) Ma.dk 13
® = we (o)1 e ® 1s)
where M is the molecular weight of molecules with the partition coefficient .
k, and « is a parameter fixed by the conditions of the method of molecular
weight determination. This formula is valid in cases when number averages
(e = —1), weight averages (¢ = 1) or viscosity averages (0.5'<< ¢ < 1) of
the molecular weight are measured.

Eqn. (13) can be solved with respect to f(k) - M@ according to a method
quite analogous to the one suggested for eqn. (3). By dividing the solution
of eqn. (13) with the solution of eqn. (3) one obtains M¢ as a function of k.
By applying such a method serious errors can be expected because errors
from the two approximate solutions are introduced. For this reason other
methods to calculate M@ as a function of £ ought to be tried. By introducing
a model for the relation between M@ and k as below a solution is obtained
which is independent of the solution of egn. (3):

Mi=B.Ink+ZXC ¥ (14)

where it is considered that ¢ can only adopt small negative or positive values
(including 0).
From eqns. (13) and (14) one obtains

- a P+0
= B k) -Ink-dk k)-dk
— 5. B0 r o sp+i (15)
where
Sp) = e (16)
(»)
By dividing with S(p) one obtains
dInS(p) S(p+i)
=B. C; - 17
H) =BT+ 2 0S5k (17)
As M(p) and S(p) are known from the experiments and dhldi)(p) can be obtain-
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ed graphically it is possible to calculate B and C; for instance by the method
of least squares. If a good correlation between observed and caloulated values
is not obtained when only a few terms of the sigma of eqn. (17) are made
use of, this method is not to be recommended. Then another model must
be tried or the first mentioned method must be used. The expression in eqn.
(14) is, however, not chosen only because it gives a rather simple solution
(eqn. 17), but also for theoretical reasons. According to the Brensted formula
(eqn. 1) In k is proportional to the degree of polymerisation. The real relation
between these quantities is certainly more complex and therefore the author
has chosen a modified approach. The formula can be considered especially
convenient in cases when @ = 1 or close to one, as for instance in viscometric
measurements.

The range of validity of the relation obtained between the molecular weight
and the partition coefficient is difficult to estimate from one experiment
only. Especially at high and low molecular weights appreciable errors can
be expected. By investigating several samples of different mean molecular
weights of the same polymer at the same experimental conditions it would
be possible to obtain a curve which covers an appreciable molecular weight
range.

MOLECULAR FREQUENCY CURVES

The final problem is to convert the frequency functions of partition coeffi-
cient to molecular weight frequency functions. This can be achieved by
applying the formula

de

o) = f(k) - T3 (18)

where g(M) is the molecular weight frequency function. The derivative (%%

is obtained from the relation between partition coefficient and the molecular
weight by graphical or other means.

DISCUSSION

The mathematical methods for treating the experimental data from coun-
ter current fractionations are based on the assumptions that the quantities
involved can be represented by models. These models are chosen so that a
rather simple numerical treatment is possible.

The basic assumptions which are made are discussed by Almin and Steen-
berg 5. It is, however, very probable that the laws which are used to deduce
eqns. (3) and (13) do not hold in practice. The relation between the molecular
weight and the partition coefficient affords a special problem. The experi-
mental conditions ought to be chosen so that this relation is a monotonous
one. These problems will be discussed in the experimental parts of this series.
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