Complexes of the 4d- and 5d-Groups # III. Absorption Spectra of Marcel Delépine's Rhodium(III) and Iridium(III) Complexes CHR. KLIXBÜLL JØRGENSEN Chemistry Department A, Technical University of Denmark, Copenhagen, Denmark Professor M. Delépine has kindly furnished the octahedral complexes of rhodium(III) and iridium(III) with pyridine, oxalate, chloride, bromide, ammonia and water. In the cis-isomers of rhodium(III), the first transition to a singlet level is observed approximately at the position interpolated from the complexes with six equal ligands, while the first strong band is split into two bands of trans-isomers. However, it is difficult to describe this behaviour quantitatively by the ligand field theory for tetragonal symmetry without assuming interaction with higher ${}^1\varGamma_{t_5}$ levels. In iridium(III), the electron transfer bands of oxalate groups and the ultraviolet absorption of pyridine render the observation of singlet bands difficult, while the triplet bands are rather strong due to the intermediate coupling. The trans-isomer of Ir py₂Cl₄-, but not of Ir ox₂Cl₂-3, has the triplet band at a lower wavenumber than the cis-isomer. The acidity of water in iridium(III) complexes is remarkably low, thus pK = 5.1 of trans-Ir py₂(NH₃)₃H₂O+3, 6.7 of cis-Ir py₂Cl₃(H₂O) and ~10.1 of Ir Cl₅(H₂O)⁻². In the first paper of this series ¹, the absorption spectra of several rhodium(III) and iridium(III) complexes were interpreted as transitions to one of the two triplet levels ${}^3\Gamma_4$ and ${}^3\Gamma_5$ and to the two singlet levels ${}^1\Gamma_4$ and ${}^1\Gamma_5$ of the excited configuration $\gamma_5{}^5\gamma_3$ while the groundstate is ${}^1\Gamma_1$ of $\gamma_5{}^6$. This notation ² is only meaningful for complexes of perfect cubic symmetry, e.g. with six equal ligands in equal distances from the central ion. Most complexes M A_nB_{6-n} with two different ligands A and B arranged in a regular octahedron have tetragonal symmetry ³, of these trans-M A_4B_2 has a centre of inversion as also M A_6 , while the other complexes have no centre of inversion. In some cases, the Jahn-Teller effect produces tetragonal symmetry by distortion of M A_6 , e.g. copper(II)⁴⁻⁷. While these effects are conspicuous in the absorption spectra, the regular octahedral d³-, d⁸- and diamagnetic d⁶-systems without Jahn-Teller effect 3,8,9 exhibit only small effects of tetragonal splitting with mixed sets of ligands, e.g. nickel(II) complexes ${}^{10-12}$. Mr. C. E. Schäffer will later demonstrate that the absorption bands of chromium(III) complexes of tetra- gonal symmetry generally are only slightly widened, but do not always exhibit the splitting, predicted from the ligand field theory by Hartmann and Kruse ¹³; Linhard and Weigel ¹⁴ found that pentamine complexes of cobalt(III) in most cases exhibit a broadening or a splitting of the first singlet band, which is even more evident in *trans*-substituted cobalt(III) tetramine ions ¹⁵. This led Orgel ¹⁶ to apply the ligand field theory on the case, and Basolo, Ballhausen and Bjerrum ¹⁷ have later given more evidence, while Yamada, Nakahara, Shimura and Tsuchida ¹⁸ investigated the dichroism* of *trans*-Co en₂Cl₂+ and *trans*-Co en₂Br₂+ in crystals. Professor Marcel Delépine of Collège de France has kindly placed at my disposal samples of the highly robust *cis*- and *trans*-isomers of rhodium(III) and iridium(III) complexes, which allow a comparison with the behaviour of cobalt(III). Table 1. Absorption bands of M. Delépine's rhodium(III) complexes. λ_n is the wavelength, σ_n the wavenumber, ε_n the molar extinction coefficient of each maximum. $\delta(-)$ is the halfwidth towards smaller and $\delta(+)$ towards larger wavenumbers. The ligand field quantum numbers of the excited levels are discussed in the text. | | $\lambda_{\mathbf{n}}$ | $\sigma_{\mathbf{n}}$ | $arepsilon_{\mathbf{n}}$ | δ() | $\delta(+)$ | |---|------------------------|-----------------------|--------------------------|--------------|----------------| | , | $\mathrm{m}\mu$ | \mathbf{K} | | \mathbf{K} | \mathbf{K} | | cis-Rh ox ₂ Cl ₂ -3 | 435 | $23\ 000$ | 190 | 1 900 | | | | $\bf 352$ | 28 400 | 275 | $2\ 500$ | _ | | | 285 | 35 100 | 1 900 | 1 900 | | | trans-Rh ox ₂ Cl ₂ -3 | 470 | 21 300 | 54 | 1 500 | 2 100 | | | 398 | $25\ 100$ | 38 | _ | ****** | | | 285 | 35 100 | 1 300 | 1 800 | _ | | cis -Rh py_2Cl_4 | 448 | 22 400 | 91 | 1 800 | | | 100 | 348 | $28\ 700$ | 118 | _ | - . | | | 270 | 37 000 | 8 300 | 1 100 | _ | | | 263.5 | 38 000 | 11 800 | | | | | 257.0 | 38 900 | 14 500 | | _ | | | 222 | $45\ 000$ | 36 000 | 4 800 | | | trans-Rh py ₂ Cl ₄ - | 500 | $20\ 000$ | 39 | 1 600 | _ | | | 431 | $23\ 200$ | 92 | 1 500 | 1600 | | | 269 | $37\ 200$ | 11 600 | $1\ 200$ | _ | | | $\bf 261$ | $38\ 300$ | 14 600 | _ | _ | | | $\bf 256$ | 39 100 | 14 400 | _ | _ | | | 216 | $46\ 400$ | $36\ 000$ | 4 000 | _ | | $1,2,6$ -Rh py_sCl_s | 422 | 23700 | 76 | $2\;500$ | _ | | Rh py ₄ Cl ₂ + | 411 | $24\ 300$ | 70 | 1 300 | 1 900 | | | 268 | 37 300 | 7 700 | 500 | | | | 261.5 | $38\ 200$ | $11\ 300$ | _ | Parkette | | | 255 | $39\ 200$ | 12 100 | | | | | $\boldsymbol{228}$ | $43 \ 900$ | 33 000 | 2900 | _ | #### DICHLORO BIS(OXALATO)RHODIUM(III) IONS Fig. 1 and Table 1 give the absorption spectra of cis- and trans-Rh ox₂Cl₂ prepared by Delépine ¹⁹. The two bands of the cis-isomer are situated nearly as interpolated between the cubic Rh Cl₆ and Rh ox₃, given in Ref. 1: ^{*} Recently, Ballhausen and Moffitt ³⁸ applied the selection rules for transitions, coupled with one quantum of odd vibration, to these dichroitic effects, supporting the identification of the first band as ${}^{1}\Gamma_{11} \rightarrow {}^{1}\Gamma_{15}$. Fig. 1. Absorption spectra of rhodium(III) dichlorodioxalate complexes. 0.006 M trans-K₃[Rhox₂Cl₂],4H₂O and 0.005 M cis-K₃[Rhox₂Cl₂], H₂O in aqueous solution. Fig. 2. Absorption spectra of rhodium(III) dipyridinotetrachloro complexes. 0.014 M cis-K[Rhpy₂Cl₄], H₂O and 0.016 M trans-K₃[Rhpy₂Cl₄], H₂O in aqueous solution. | | σ_{1} | σ_{2} | |--|--------------|--------------| | Rh Cl _g | 19 300 K. | 24 300 K | | Rh ox, | 25 100 | 30 000 | | cis-Rh ox ₂ Cl ₂ | 23 000 | $28\ 400$ | | $\frac{1}{3} \sigma_{\mathbf{n}}(\mathrm{RhCl_6}^{}) + \frac{2}{3} \sigma_{\mathbf{n}}(\mathrm{Rh} \mathrm{ox_3}^{})$ | 23 170 | 28 100 | In the place of σ_1 , the *trans*-isomer gives two weak bands at 21 300 and 25 100 K. These bands ¹⁷ are caused by transitions to the levels ¹ Γ_{t_5} and ¹ Γ_{t_2} , which have the degeneracy numbers 2 and 1, respectively. The weighted average of the two wavenumbers is then 22 600 K. #### DIPYRIDINE TETRACHLORO RHODIUM(III) IONS Fig. 2 and Table 1 give the absorption spectra of cis- and trans-Rh py_2Cl_4 -studied by Delépine ²⁰. While trans-Rh ox_2Cl_2 — is tetragonal in the same way as copper(II) complexes, viz. with less crystal field strength along one axis than along the two equivalent axes in a plane, trans-Rh py_2Cl_2 — is »compressed« tetragonal ³, since the order in the spectrochemical series is: $$Br^- \langle Cl^- \langle ox^{--} \langle H_2O \langle py \langle NH_3 \langle en. \rangle \rangle$$ The Rh py₆⁺⁺⁺ is regrettably not known, but its first singlet band can be assumed ¹ to be $\sim 30~000~\rm K$. The cubic contribution ³ of Rh py₂Cl₄⁻ is thus 22 900 K. cis-Rh py₂Cl₄⁻ has the first singlet band at 22 400 K. In trans-Rh py₂Cl₄⁻, two bands are observed at 20 000 and 23 200 K. In this case the second band is stronger than the first, agreeing with the degeneracy numbers 1 and 2. The weighted average is 22 200 K. #### DICHLORO TETRAPYRIDINE RHODIUM(III) IONS The pale yellow Rh py₄Cl₂⁺ was first prepared by S. M. Jørgensen ²¹. Recently, Delépine ²² discovered the strong catalytic influence of even 1 % of alcohols on the reaction between pyridine and a concentrated aqueous solution of Na₃RhCl₂, forming [Rh py₄Cl₂] Cl₂6 H₂O. The spectrum (Table 1) has a band at 24 400 K, which is so low a wavenumber that it presumably is due to ${}^{1}\Gamma_{t_{5}}$ of a trans-complex, which here is analogous to copper(II). The trans-configuration is also supported by the formation 21 of [Rh py₄Cl₂]Cl,HCl, 2 H₂O analogous to the similar trans-[Co en₂Cl₂]Cl,HCl, 2 H₂O. Steric reasons seem to prevent pyridine from using the two perpendicular places. When Rh py₄Cl₂⁺ is boiled for some minutes with dilute Na₂CO₃, the band is shifted to 358 m μ (28 000 K) and by acidification with HClO₄, it is shifted to 384 m μ (26 000 K). This behaviour can be interpreted by the formation of hydroxo- and aquo-complexes, of which the spectra are analogous to Co en₂(OH)₂⁺ and trans-Co en₂(H₂O)₂⁺³ studied by Bjerrum and Rasmussen ²³. Analogously when cis-Rh py₂Cl₄ is boiled with water, or with Na₂CO₃ and subsequently with HClO₄, the first maximum is shifted to 421 m μ (23 700 K) corresponding to cis-Rh py₂Cl₃(H₂O). If trans-Rh py₂Cl₄ is analogously treated, an orange precipitate ²⁰, trans-Rh py₂Cl₃(H₂O), H₂O is formed, which on heating polymerizes ²⁰ to a completely insoluble pink product, Rh py₂Cl₃. Only one ligand field band has been observed of 1,2,6-Rh py₃Cl₃ (dissolved in CHCl₃) at 23 700 K. This seems somewhat less than the probable cubic contribution ~24 600 K and may be ascribed to rhombic splitting of ¹Γ₄. However, the larger number of interactions possible between levels in low symmetry may systematically depress the wavenumber of the first band. Fig. 3. Absorption spectra of iridium(III) chloro-oxalate complexes. 0.001 M to 0.014 M $K_a[Ir oxCl_4]$, H_2O , 0.0006 M to 0.011 M cis- $K_a[Ir ox_2Cl_2]$, H_2O (racemic form), and 0.0006 M to 0.011 M trans- $K_a[Ir ox_2Cl_2]$, E_aCl_a 0 in aqueous solution. Table 2. Absorption bands of M. Delépine's iridium(III) complexes. Notation as in Table 1. In the column "Excited level", triplet and singlet denote ligand field levels, Ir py the transition of an electron from the central ion to pyridine, redox the usual electron transfer spectra in the opposite direction, and py 0, py 1,... the vibrational structure of the pyridine band (py broad denotes the actual maximum, when this structure is blurred out), while "oxalate" denotes the ligand transition, polarized by the iridium ion. | | Excited level. | λ_n | $egin{array}{c} \sigma_{ m n} \ m K \end{array}$ | $oldsymbol{arepsilon}_{\mathbf{n}}$ | $^{\delta(-)}_{ m K}$ | |--|---|---|---|---|-------------------------------| | Ir oxCl ₄ -3 | triplet | $ rac{\mathrm{m}\mu}{550}$ | 18 200 | 21 | 1 700 | | 11 02014 | (singlet) | \sim 375 | 26 600 | 500 | | | | oxalate | 298 | 33 600 | 1 450 | 4 400 | | cis -Ir $ox_2Cl_2^{-3}$ | triplet | 510 | 19 600 | 27 | 1 300 | | | (singlet) | ~ 360 | 27 800 | $\sim 1 100$ | | | | oxalate | 294 | 34 000 | 3 100 | 4 200 | | trans-Ir ox ₂ Cl ₂ -3 | ${f triplet}$ | 508 | 19 700 | 12 | 1 800 | | | (singlet) | ~ 368 | $27\ 200$ | \sim 800 | | | | oxalate | 303 | $33\ 000$ | 3 200 | 3 100 | | $\operatorname{IrCl}_{5}(\mathbf{H_{2}O})^{}$ | ${f triplet}$ | 550 | 18 200 | 12 | $2\ 400$ | | | $\mathbf{singlet}$ | 405 | 24 700 | 110 | 2 200 | | | $\mathbf{singlet}$ | 347 | $28\ 800$ | 110 | | | Ir pyCl ₅ | $ ext{triplet}$ | 540 | 18 500 | 11 | 1 600 | | | (singlet) | \sim 420 | 23 800 | 100 | 2 000 | | | Ir py | 329.5 | 30 400 | 2 250 | 1 800 | | · T 01 - | py broad | 279 | 35 800 | 5 100 | 1 900 | | cis -Ir py_2Cl_4 | triplet | 464 | 21 600 | 20 | 2 000 | | | Ir py | 313 | 32 000 | 4 700 | $2\ 000$ | | | (py 0) | $\begin{array}{c} 267.5 \\ 263 \end{array}$ | $\frac{37}{38} \frac{400}{000}$ | 9 600
9 600 | | | tuana In ny Cl - | (py 1) | 515 | 19 4 00 | 8.8 | $\frac{-}{1600}$ | | trans-Ir py ₂ Cl ₄ | triplet
(singlet) | \sim 395 | $\frac{19}{25} \frac{400}{300}$ | ~80 | 1 000 | | | Ir py | \sim 316 | 31 600 | $\frac{\sim}{4400}$ | 1 500 | | | $\begin{array}{c} \mathbf{p} \mathbf{y} \\ \mathbf{p} \mathbf{y} 0 \end{array}$ | $\begin{array}{c} 310 \\ 273 \end{array}$ | 36 600 | 8 700 | | | | py 1 | $\frac{210}{267}$ | $37\ 400$ | 9 300 | | | $1,2,3$ -Ir $\mathrm{py_3Cl_3}$ | Îr py | 326.5 | 30 600 | - | 1 700 | | 1,2,0 11 p/3013 | py 0 | 276 | 36 200 | _ | - | | | py i | $\frac{265}{265}$ | 37 700 | | | | $1,2,6$ -Ir py_aCl_a | triplet | $\frac{1}{432}$ | 23 100 | 53 | 2 000 | | -,-, 1-0 33 | $\mathbf{Ir} \mathbf{py}$ | 319 | 31 400 | 1 600 | 2 800 | | | py broad | $\bf 265$ | 37 700 | _ | | | $Ir py_4Cl_2^+$ | $ ilde{ ext{triplet}}$ | 404 | $24 \ 800$ | 25 | 2 000 | | 102 | $\mathbf{Ir} \mathbf{py}$ | 284 | $35\ 200$ | 7 000 | $2\ 400$ | | | $\mathbf{p}\mathbf{y}0$ | 271 | $36\ 900$ | 11 400 | | | | py 1 | 264.5 | $37\ 800$ | 14 700 | | | | py 2 | 257.5 | $38\ 900$ | 16 400 | | | | py 3 | 250 | 40 000 | 18 000 | _ | | | py 4 | 245.5 | 40 800 | | _ | | cis -Ir $py_2Cl_3(H_2O)$ | triplet | 455 | $\frac{22\ 000}{23\ 500}$ | $\frac{23}{150}$ | 1 300 | | Sun-isomer | (singlet $)$ | \sim 378 | 26 500 | \sim 150 | | | | $\operatorname{Ir}\operatorname{py}$ | 304.5 | 32 800 | 5 000 | 2~000 | | | py 0 | 265.5 | 37 700 | 9 700 | | | -: T Cl OTT | py 1 | 260 | 38 500 | 10 300 | $\frac{-}{200}$ | | cis-Ir py ₂ Cl ₃ OH ⁻
Sun-isomer | Ir py | $\begin{array}{c} 326 \\ 275 \end{array}$ | $\frac{30}{36} \frac{700}{400}$ | $\begin{array}{c} \textbf{4.500} \\ \textbf{8.600} \end{array}$ | | | Suit-isomer | (py 0) | $\begin{array}{c} 273 \\ 267 \end{array}$ | 37 400
37 400 | 9 100 | | | cis-Ir py ₂ Cl ₃ (H ₂ O) | py l
triplet | \sim 445 | $\begin{array}{c} 37\ 400 \\ 22\ 500 \end{array}$ | 28 | $\frac{-}{2800}$ | | autoclave-isomer | Ir py | 304 | 32 900
32 900 | 5 600 | $\frac{2}{2} \frac{300}{000}$ | | account o isomor | $(\mathbf{py} \ 0)$ | 265 | 37 800 | 10 300 | | | | py 1 | 259 | 38 600 | 11 700 | | | cis -Ir $py_2Cl_3(OH)^-$ | triplet | ~ 475 | 21 000 | 38 | | | 102-31/ | 1 | | | | | Acta Chem. Scand. 11 (1957) No. 1 | autoclave-isomer | $\mathbf{Ir}\;\mathbf{py}$ | 317.5 | 31 500 | 5 300 | 2 700 | |---|---|---|------------------|---|-------------------------------| | | (\mathbf{py}_{0}) | 276 | 36 300 | 7 800 | | | | py 1 | 268 | 37 300 | 8 100 | | | $trans$ -Ir $py_2Cl_3(H_2O)$ | $ ext{triplet}$ | ~ 475 | 21 000 | 17 | _ | | | Ir py | 307 | 32 600 | 4 900 | 1 800 | | | (py 0) | $\begin{array}{c} 271 \\ 265 \end{array}$ | 36 900
27 900 | 8 500 | | | | py 1 | $\begin{array}{c} 260 \\ 260 \end{array}$ | 37 800
38 500 | $10\ 300 \\ 10\ 000$ | | | trans-Ir py ₂ Cl ₃ (OH) | py 2
triplet | \sim 488 | 20 500 | ~18 | | | 110163-11 py ₂ O1 ₃ (O11) | Ir py | 329.5 | 30 400 | $\widetilde{3900}$ | $\frac{-}{2400}$ | | | py broad | 284.5 | 35 200 | 7 200 | 2 400 | | $Ir py(NH_3)_4 Cl++$ | (triplet) | ~ 365 | 27 400 | 30 | 1 100 | | 11 py (11113/4 01 | Ir py | 290 | 34 500 | 2 040 | 2 000 | | | py 0 | 271 | 36 900 | 3 400 | | | | py 1 | 265 | 37 800 | 3 870 | | | | $\mathbf{py} \ 2$ | 258.5 | 38 700 | $4\ 060$ | | | | py 3 | 251.5 | 39 800 | 4 230 | | | | py 4 | 246 | 40 700 | 4 350 | | | | py 5 | 239 | 41 900 | 4 410 | | | ${ m Ir} \ { m py_2(NH_3)_3H_2O^{+3}}$ | $(\mathbf{Ir} \; \mathbf{py?})$ | $\boldsymbol{282}$ | 35 4 00 | 5 700 | 1 400 | | | $\mathbf{p}\mathbf{y}$ 0 | 269.5 | 37 100 | 8 700 | | | | py 1 | 263.5 | 38 000 | 9 700 | _ | | | ру <u>2</u> | 256.5 | 39 000 | 9 600 | | | | py 3 | 251 | 39 900 | 8 700 | _ | | T (NTT) OTT ! ! | py 4 | 245 | 40 900 | 8 200 | | | ${ m Ir} \ { m py_2(NH_3)_3OH} + +$ | Ir py | 304 | 32 900 | 4 500 | 2~600 | | | py 0 | $\begin{array}{c} 271 \\ 263 \end{array}$ | 36 900
38 000 | $\begin{array}{c} 7\ 200 \\ 8\ 800 \end{array}$ | _ | | | $egin{array}{c} \mathbf{py 1} \\ \mathbf{py 2} \end{array}$ | 203
258 | 38 800 | 8 800 | | | $Ir py_2(NH_3)_3Cl++$ | (triplet) | \sim 370 | 27 000 | ~24 | 700 | | 11 py2(11113)301 | Ir py | 285.5 | 35 000 | 6 600 | 2 400 | | | py 0 | 270.5 | 37 000 | 7 600 | | | | py i | 264 | 37 900 | 9 600 | | | | $\stackrel{\mathbf{P}}{\mathbf{p}}\stackrel{\mathbf{Z}}{2}$ | 258 | 38 800 | 10 200 | | | $Ir py_2(NH_3)_2Cl_2+$ | (triplet) | ~ 380 | 26 300 | 38 | 1 300 | | 1000 | Ìr py | 295 | 33 900 | 6 200 | 2 000 | | | py 0 | 272 | 36 800 | 8 800 | _ | | | py 1 | $\bf 265$ | 37 700 | 10 500 | | | | $\mathbf{py} \ 2$ | 260 | $38\ 500$ | 10 400 | - | | | $\cdot py \ 3$ | 254 | 39 400 | 8 900 | _ | | ${ m IrBr_6^{-3}}$ | ${f triplet}$ | 645 | 15 500 | 12 | _ | | | triplet | 585 | 17 100 | 16 | | | | singlet | 442 | 22 600 | 175 | 1 900 | | | singlet | 380 | 26 300 | 145 | $\frac{-}{2200}$ | | | redox | 270 | 37 000 | $12\ 000 \\ 20\ 000$ | 2 200 | | InPa /II () | $f redox \\ f redox$ | $\begin{array}{c} 241 \\ 271 \end{array}$ | 41 500
36 900 | 10 500 | 2 600 | | $\mathrm{IrBr_{5}(H_{2}O)^{}}$ | redox | $\begin{array}{c} 271 \\ 239.5 \end{array}$ | 41 800 | 17 500 | 2 000 | | Ir py ₂ Br ₄ | triplet | 515 | 19 400 | 17 300 | 1 400 | | ii py ₂ Di ₄ | singlet | 388 | 25 800 | $2\overline{30}$ | $\frac{1}{2} \frac{100}{200}$ | | | Ir py | 319 | 31 400 | 4 300 | $\frac{2}{2}\frac{200}{200}$ | | | py broad | 270 | 37 000 | 11 500 | 2 700 | | | redox | $\sim \overline{220}$ | 45 500 | $\sim 25 000$ | | | $1,2,3$ -Ir py_3Br_3 | Ir py | 335 | 29 800 | \sim 5 000 | 1 600 | | . , 100-0 | py broad | 284 | 35 200 | ~ 9000 | _ | | $1,2,6$ -Ir py_3Br_3 | triplet | 471 | 21 200 | . 36 | 1 900 | | | Ir py | 321 | 31 200 | ~ 5 300 | 2 600 | | | py broad | 269 | 37 200 | $\sim 10 000$ | - | | | | | | | | Fig. 4. The ligand field singlet → triplet bands of iridium(III) complexes. 0.01 M to $0.2\,\mathrm{M}\,\mathrm{K_3IrCl_6}$, $3\,\mathrm{H_2O}$ in 1 M HCl and pure $\mathrm{H_2O}$, immediately measured. 0.014 M $\mathrm{K_3[Ir}\,\mathrm{pycll_6]}$, $3\,\mathrm{H_2O}$ in $\mathrm{H_2O}$, immediately measured. 0.009 M cis-K[Ir py₂Cl₄], $\mathrm{H_2O}$ in $\mathrm{H_2O}$ 0.041 M trans-K[Ir py₂Cl₃], $\mathrm{H_2O}$ in $\mathrm{H_2O}$ 0.011 M cis-[Ir py₂Cl₃(H₂O)], 2 $\mathrm{H_2O}$ (sun-isomer) in 0.1 M HCl. 0.005 M trans-Ir py₂Cl₃OH⁻ from trans-[Ir py₂Cl₃(H₂O)], $\mathrm{H_2O}$ in 1 M NH₃. 0.005 M [1,2,6-Ir py₃Cl₃ in CHCl₃. #### OXALATO- AND CHLORO-IRIDIUM(III) COMPLEXES Vèzes and Duffour ²⁴ studied the mixed chloro-oxalato complexes of iridium(III), and Delépine ²⁵ later investigated the exact conditions for formation of Ir oxCl₄⁻³, cis- and trans-Ir ox₂Cl₂⁻³. In these complexes, the triplet band ¹ of IrCl₆⁻³ can be seen (Table 2 and Fig. 3) to be regularly shifted towards the higher wavenumbers with increasing number of oxalate groups, while the two singlet bands are hidden by the electron transfer band in the ultraviolet. This band has been found by Babaeva and Mosyagina ²⁶ in all oxalate complexes. In iridium(III), the ε_n of the maximum is 1 600 per oxalate group. In Ir ox₃—, all the crystal field bands are hidden ¹. The differences between cis- and trans-Ir ox₂Cl₂— are the intensity of the triplet band (which have the same position in the two complexes) and 3 % different wavenumbers of the electron transfer band (which perhaps is an internal transition in the oxalate group, analogous to the acetylacetonate ⁷ absorption.) Acta Chem. Scand. 11 (1957) No. 1 #### PYRIDINE- AND CHLORO-IRIDIUM(III) COMPLEXES Delépine 27 prepared the red-brown Ir pyCl₅-, and 28 the pink trans-Ir py₂Cl₂ and orange cis-Ir py₂Cl₄, and the two yellow compounds ²⁵ 1,2,3-Ir py₃Cl₃ and 1,2,6-Ir py₃Cl₃. Finally, Professor M. Delépine has sent me the chloride of Ir py₄Cl₂⁺, which is not yet described in the literature, but is made by heating cis-Py H[Ir py₂Cl₄] with pyridine 1.5 h to 130°C. As seen from Fig. 4 and Table 2, the triplet band is also here shifted from the place in IrCla towards higher wavenumbers. But the triplet band of trans-Ir py₂Cl₄ is shifted 2 200 K towards the red and is less intense, compared to the band of the cis-form. It might be argued that the weak band observed in Ir py₄Cl₂⁺ is the first singlet band as in the corresponding rhodium complex discussed above, but the extreme hypsochromy of Mathieu's Ir(NH₃), Cl⁺⁺ and Ir en₃⁺⁺⁺ makes the triplet assignment more probable. The pyridine-complexes of iridium(III) all have a broad band in the range 30 000-34 000 cm⁻¹ and a set of narrow bands, often four members of a vibrational structure 37 000—41 000 cm⁻¹ (cf. Fig. 5). The latter bands are nearly equal in different complexes and can be ascribed to the π -electron system of the heterocyclic pyridine-ring. The broad band at lower wavenumber is not observed in free pyridine or pyridinium salts with a comparable intensity. Further, Rh py₂Cl₄ and Rh py₄Cl₂ do not either exhibit this band, which must be due to some electron transfer process in iridium(III) which is not observed in pyridine-free complexes 1. In the fourth paper of the series, the latter band will be discussed. Its position is dependent on the other ligands and seems to follow the spectrochemical series. Actually, it has nearly the same wavenumber as predicted of the ligand field transition to the second singlet level ${}^{1}\Gamma_{5}$. However, it is not very likely that it is strongly intermixed with this Laporte-forbidden band, or that it is a triplet or weak singlet band elsewise known of pyridine: rather, it is probably due to transition of a γ_5 -electron from iridium(III) to a π -antibonding orbital of pyridine. #### THE THREE ISOMERS OF DIPYRIDINO TRICHLORO AQUO IRIDIUM(III) Delépine 29,39 has prepared three isomers of Ir py₂Cl₃(H₂O): one with the pyridines in trans-position, and the two possible monomers with pyridine in cis-position and the water in trans-position to either pyridine or chloride. The two latter isomers can be made from an aqueous solution of cis-Ir py₂Cl₄ by a photochemical reaction with sunlight, producing a relatively more watersoluble form, and by heating in an autoclave to 130°C, where polymerized byproducts and a less soluble monomer is produced. The geometrical configuration of the "sun" and the "autoclave" isomer is not yet elucidated. Cf. the seven publications by Delépine 29. It is seen in Table 2 that while the absorption spectra of the three isomers of Ir py₂Cl₃(H₂O) are not very different, the alkaline solutions, forming Ir py₂Cl₃(OH), have, e.g., the iridium-pyridine band mentioned above at highly different wavenumbers. It is remarkable that the water group can be revers- Fig. 5. The Ir-py and genuine pyridine bands of iridium(III) complexes. ibly titrated without appreciable loss of chloride in alkaline solution for many hours at room temperature. Even the least robust iridium(III) pyridine complex with the highest number of chloride groups, Ir pyCl₅⁻, aquates during several days with the result that the Ir-py band shifts monotonously towards higher wavenumbers of the aquo forms and towards lower wavenumbers of the hydroxo forms, as discussed in the next paper. It is necessary to boil the alkaline solution of Ir pyCl₅⁻ to efficiently destroy the binding between iridium and pyridine. trans- and cis-(autoclave) Ir py₂Cl₃(H₂O) are so weakly soluble in water that it is difficult to observe the ligand field triplet transition. Similar remarks apply to the 1,2,3-isomers of Ir py₃Cl₃ and Ir py₃Br₃, of which the best solvent known, chloroform, only dissolves a very small amount. PYRIDINE-, AMMONIA-, CHLORO-, AQUO-COMPLEXES OF IRIDIUM(III) Delépine ²⁸ has prepared yellow Ir py₂(NH₃)₂Cl₂⁺, pale yellow Ir py₂ (NH₃)₃Cl⁺⁺, and white Ir py₂(NH₃)₃H₂O⁺⁺⁺, all with the pyridines in transposition, and Delépine and Pineau ³⁰ the pale yellow Ir py(NH₃)₄Cl⁺⁺. In the chloro complexes, there are very weak traces of a shoulder corresponding to the triplet band at 360 m μ of Ir(NH₃)₅Cl⁺⁺. The wavenumber of the broad and strong Ir-py band increases with a decreasing number of chloride groups, but seems still to subsist in Ir py₂(NH₃)₃H₂O⁺⁺⁺ superposed upon the narrow pyridine bands, while it is very evident in Ir py₂(NH₃)₃OH⁺⁺ (see Fig. 5). #### THE ACIDITY OF WATER IN IRIDIUM(III) COMPLEXES Reversible titration curves have been made with a glass electrode pH-meter of the following of Delépine's compounds: cis-Ir py₂Cl₃(H₂O) (sun) has pK=6.7 trans-Ir py₂(NH₃)₃H₂O⁺⁺⁺ has pK=5.1 Ir Cl₅(H₂O) has p $K\sim 10.1$, however with some decomposition in alkaline solution. Thus, the acidity of water increases with the positive external charge, but not to a larger extent than known of aquo complexes of cobalt(III) or chromium(III). A sample of what was assumed to be Ir $py_2(NH_3)_3NH_2^{++}$ exhibited the same absorption spectrum as Ir $py_2(NH_3)_3OH^{++}$, and by titration of a sample of assumed Ir $py_2(NH_3)_4Cl_3$, 80 % of the calculated stoichiometric amount titrated with a fine one-proton curve, corresponding to pK = 5.2. Thus, the latter sample contains at most 20 % Ir $py_2(NH_3)_4^{+++}$, and its acidity cannot be ascribed to formation of amido complexes. This is not in disagreement with the analyses of Delépine ²⁸, who determined only iridium and chloride but not nitrogen. #### PYRIDINE- AND BROMO-IRIDIUM(III) COMPLEXES Ir Br₆⁻⁻ and Ir Br₅(H₂O)⁻⁻ have not very different spectra in aqueous solution, as seen from Table 2. The former ion aquates probably rather quickly in aqueous solution, explaining the slight deviation from the solution in HBr, described previously ¹. While most other iridium(III) complexes do not exhibit maxima of the electron transfer bands in the accessible range above 205 m μ Ir Br₆⁻⁻ and Ir Br₅(H₂O)⁻⁻ have a double band with $\varepsilon_n \sim 11~000$ and 20 000, resembling much the isoelectronic ³² Pt Br₆⁻⁻. The doublet structure and energy levels of halide complexes will be discussed in the fourth paper of this series. In dilute solution, both IrBr₆⁻⁻ and IrBr₅(H₂O)⁻⁻ form the same IrBr₆⁻⁻ by addition of bromine: $${\rm IrBr_5(H_2O)^{--}} + 1/2 \ {\rm Br_2} = {\rm IrBr_6^{--}} + {\rm H_2O}$$ the total reaction thus being an addition of a bromine atom and not a simple electron transfer. Madame Delépine-Tard ³⁷ prepared dark red Ir py₂Br₄, which has the triplet at so high a wavenumber (compared to Ir py₂Cl₄) that the *cis*-structure is most probable. Besides the Ir-py and the py-bands, this ion exhibits also a genuine redox band at a much higher wavenumber than IrBr₆, as usually found for a decreasing number of halide ligands. 1,2,6-Ir py₃Br₃ is sufficiently soluble ²⁹ in CHCl₃ to show the triplet band. The Ir-py band has a larger wavenumber in this isomer than in 1,2,3, as is also found for Ir py₃Cl₃. Table 3. Absorption bands of iridium(IV) pyridine pentachloro complex. | | $ rac{\lambda_{\mathbf{n}}}{\mathbf{m}oldsymbol{\mu}}$ | $\mathbf{\overset{\sigma_{n}}{K}}$ | $oldsymbol{arepsilon}_{\mathbf{n}}$ | $ rac{\delta(-)}{\mathbf{K}}$ | $egin{array}{c} \delta(+) \ \mathrm{K} \end{array}$ | |------------------------|--|------------------------------------|-------------------------------------|-------------------------------|---| | Ir pyCl _s - | 625 | 16 000 | 400 | 900 | | | | ∼503 | 19 900 | $2\ 450$ | 1 300 | | | | 487 | 20 500 | 2600 | | 1 400 | | | 405 | 24700 | 1 500 | 1 700 | 2 000 | | | ~344 | 29 100 | $\sim \! 800$ | | _ | | | ~ 267 | 37 500 | 4 900 | | _ | #### PYRIDINE- AND CHLORO-IRIDIUM(IV) COMPLEXES Delépine 27,33 oxidized Ir pyCl₅⁻, cis- and trans-Ir py₂Cl₄⁻ to the corresponding iridium(IV) complexes Ir pyCl₅⁻ and cis- and trans-Ir py₂Cl₄. The two latter neutral compounds are nearly insoluble in any solvent. Ir pyCl₅⁻ and trans-Ir py₂Cl₄ are even stronger oxidizing agents than bromine 27 . Inamura and Kondo 34 have measured the spectrum of Ir pyCl₅⁻, which is also given in Table 3 and can be compared with 32 Ir Cl₆⁻. While the maximum in the blue-green is nearly identical except for a shoulder at 502 m μ of Ir pyCl₅⁻, the double maximum at 431 and 414 m μ of IrCl₆⁻ is here shifted to 405 m μ and is single. Further, Ir pyCl₅⁻ has the first shoulder at 625 rather than at 575 m μ . Presumably, all the bands are mainly due to transfer of π -electrons 32 . If the band at 625 m μ of Ir pyCl₅⁻ was a ligand field band, it would probably be shifted towards the blue; it has rather another, mainly even excited state. Table 4. Absorption bands of pyridine and pyridinium ion in aqueous solution. Notation as in Table 1. | | Band
No. | $ rac{\lambda_{\mathbf{n}}}{\mathbf{m}\mu}$ | $_{\rm K}^{\sigma_{\rm n}}$ | $\epsilon_{\mathbf{n}}$ | |---------------|-------------|---|-----------------------------|-------------------------| | ру | 0 | 262.8 | 38 050 | 2 100 | | | 1 | 256.6 | 38 970 | 3 130 | | | 2 | 250.7 | 39 890 | 2 780 | | | 3 | 245.1 | 40 800 | 1 900 | | | 4 | \sim 239 | 41 840 | 1 200 | | py H + | 0 | 262 | 38 170 | 3 600 | | 10 | 1 | 256 | 39 060 | 5 300 | | | ${f 2}$ | 251.5 | 39 760 | 4 700 | | | 3 | \sim 245 | 40 820 | 2 900 | | Table 5. | Absorption | bands | of S. | M. Jørg | | n(11) | pyridine co | mplexes. | Nota- | |----------|------------|-------|-------|---------|--|-------|-------------|----------|-------| | | | | | | | _ | | | | | | Band
No. | $ rac{\lambda_{ ext{n}}}{ ext{m} oldsymbol{\mu}}$ | $\mathbf{\overset{\sigma_{n}}{K}}$ | $\epsilon_{ m n}$ | |---|-------------|---|------------------------------------|-------------------| | $Pt(NH_3)_spy^{++}$ | 0 | 267.5 | 37 380 | 1 930 | | 0,010 | 1 | 260.6 | 38 380 | 2 980 | | | 2 | 254.2 | 39 340 | 3 320 | | | 3 | 248.2 | 40 290 | 3 300 | | | 4 | \sim 243.5 | 41 060 | 2 920 | | Pt py ₄ ++ | 0 | 267 | 37 450 | 8 700 | | 17. | 1 | 260.2 | 38 430 | 13 600 | | | 2 | 253 | 39 530 | 15 300 | | | 3 | $243 \ broad$ | 41 150 | 19 800 | | $Pt(NH_3)_2py_2++$ | 0 | 267.5 | 37 380 | 4 650 | | | 1 | 260.3 | 38 410 | 7 800 | | | 2 | 253.4 | 39 460 | 10 300 | | | 3 | 249 | 40 160 | 10 100 | | trans-Pt(NH ₃)pyCl ₂ | 0 | 269.4 | 37 120 | _ | | | 1 | 262.2 | 38 140 | | | | 2 | 256.6 | 38 970 | _ | ### THE PYRIDINE BANDS AND S.M. JØRGENSEN'S PYRIDINO PLATINUM(II) COMPLEXES Table 4 gives the absorption bands of pyridine, which are very narrow ($\delta=300$ K) and are nearly equidistant with $\sigma_c=920$ K. This is evidently a vibrational structure, which is excited by a Franck-Condon mechanism. There is no sign of transitions from vibrationally excited levels of the electronic groundstate, and the bands can thus be numbered 0, 1, . . . according to the vibrational quantum number of the excited electronic state. In aqueous solution, there is no sign of weaker bands at smaller wavenumbers than those of the vibrational structure. Thus, the values of ε are: | 270 | 275 | 280 | 285 | 290 | $300 \text{ m}\mu$ | |-----|------------|-----|-----|-----|--------------------| | 150 | 27 | 3 | 0.5 | 0.1 | 0.02 | The pyridinium ion pyH⁺ has bands at nearly the same wavenumbers as py, but they are blurred out ($\delta \sim 500 \text{ K}$) and have $\sim 70 \%$ higher intensity. In rhodium(III) pyridine complexes, the bands have not much smaller wavenumbers than of py, and nearly the same intensity per pyridine molecule, as seen above. Some iridium(III) complexes have not very much larger bathochromic shifts of the py-bands, while other have very broad py-bands with vanishing vibrational structure at relatively low wavenumbers, $\sigma \sim 4000 \text{ K}$ below the centre of the bands of py (cf. Fig. 5). The latter behaviour of iridium(III) is enhanced by the presence of many anions (Cl⁻, Br⁻, OH⁻) among the ligands and a low number of pyridine molecules, suggesting an especially strong bonding of the pyridine with larger change of the π -electron system of this molecule than in most other complexes. As discussed in the next paper, the electron transfer, producing the new Ir-py band may be expected to occur also in pyridine complexes of other metals with low oxidation states. Platinum(II) should have possibilities for exhibiting this effect, and therefore the absorption spectra were measured of some of the pyridine complexes, prepared by S. M. Jørgensen 35. As seen from Table 5, the py-bands are shifted towards lower wavenumbers to a remarkably low extent, and there is no sign of a Pt-py band in the complexes with neutral ligands, such as py and NH₃. In the chloro complex, there may be distinguished an increasing background, but no certain conclusion can be drawn. ## LIGAND FIELD QUANTUM NUMBERS IN COMPLEXES OF TETRAGONAL SYMMETRY Qualitatively, the order of tetragonal levels ^{3,16,17} are supported by the measurements of *cis*- and *trans*-isomers of Rh ox₂Cl₂-³ and Rh py₂Cl₄-: $${}^{1}\Gamma_{5} \rightarrow {}^{1}\Gamma_{t_{4}}, {}^{1}\Gamma_{t_{5}}$$ $${}^{1}\Gamma_{5} \rightarrow {}^{1}\Gamma_{t_{4}}, {}^{1}\Gamma_{t_{5}}$$ $${}^{1}\Gamma_{4} \swarrow {}^{1}\Gamma_{t_{5}}$$ $${}^{1}\Gamma_{4} \swarrow {}^{1}\Gamma_{t_{5}}$$ "copper(II)-like" tetragonality "compressed" tetragonality The result, derived by Tanabe and Sugano ³⁶ for an electrostatic ligand field acting on pure dⁿ-configurations, viz. that ${}^{1}\Gamma_{4}$ is lower than ${}^{1}\Gamma_{5}$ of $\gamma_{5}{}^{5}\gamma_{3}$, is highly supported, since ${}^{1}\Gamma_{t_{4}}$ could hardly ³ take the place of ${}^{1}\Gamma_{t_{2}}$ in the left-hand set of levels. But quantitatively, the results reported here cannot be explained without strong interactions between the electron configurations of tetragonal orbitals. Thus, the ratio between the splitting of ${}^{1}\Gamma_{t_{2}}$ and ${}^{1}\Gamma_{t_{5}}$ and the differences of the cubic ligand field strength of the purely hexa-coordinated complexes should be a constant number 3 . However, this ratio is 0.65 for trans-Rh ox₂Cl₂- 3 , but only 0.32 for trans-Rh py₂Cl₄-. This is a more fundamental difficulty than the problem of the value 3 of B_{2}/B_{4} , which may be solved by use of other d-wavefunctions than the hydrogen-like ones, e.g. the Hartree model discussed by Linn Belford 7 , and by consideration of the much stronger influence of charge distributions near to the surface of the central ion than the point charges and point dipoles assumed in early electrostatic theory 6 . According to calculations on strong tetragonal fields 3 , it is an almost paradoxical fact that ${}^{1}\Gamma_{14}$ does not decrease much in energy, producing a larger splitting of the second band, if this is caused by ${}^{1}\Gamma_{5}$ (the energy difference between ${}^{1}\Gamma_{4}$ and ${}^{1}\Gamma_{5}$ is explained as the correlation energy between d-electrons expressed in the Racah parameters B and C). An interaction between the two ${}^{1}\Gamma_{5}$, useful for explaining a part of the splitting of the first band, will further increase the distance between ${}^{1}\Gamma_{4}$ and the second ${}^{1}\Gamma_{5}$, which actually have nearly the same energy. Among the tetragonal levels of $\gamma_{5}^{4}\gamma_{3}^{2}$, the lowest energy will probably be represented by $\gamma_{5}^{3}\gamma_{5}\gamma_{4}\gamma_{2}^{2}$ in trans-Rh py₂Cl₂- 3 and $\gamma_{5}^{3}\gamma_{4}\gamma_{4}^{2}\gamma_{1}^{2}$ in trans-Rh py₂Cl₂- 3 and $\gamma_{5}^{3}\gamma_{4}\gamma_{5}^{2}\gamma_{1}$ in trans-Rh py₂Cl₄- 3 , both composed of ${}^{1}\Gamma_{15}$ and ${}^{3}\Gamma_{15}$. Thus, the second ${}^{1}\Gamma_{15}$ may be held in place besides ${}^{1}\Gamma_{14}$ by the interaction from opposite directions. This can also explain, why the second cubic band in some few cases capriciously exhibits tetragonal splitting, e.g.¹¹ Co enta OH^{-1}. It may be noticed that the $\gamma_5^4\gamma_3^2$ and the one ${}^1\Gamma_5$ of $\gamma_5^5\gamma_3$ are rather important ³⁶, explaining the decrease of the distance between ${}^1\Gamma_4$ and ${}^1\Gamma_5$ from the asymptotical strong-field value 16 B to 10—12 B. In the case of the first tetragonal level ${}^1\Gamma_{t5}$ the configurations $\gamma_{t5}{}^3\gamma_{t4}{}^2\gamma_{t1}$ and $\gamma_{t5}{}^3\gamma_{t4}{}^2\gamma_{t3}$ must be highly intermixed 3 at low values of the tetragonality. Actually, the intermixing does not need to produce a splitting, proportional to the tetragonality, but rather to the square. This would explain why the splitting of the first band of cis-complexes is not always half as large as in the corresponding trans-complex 3. Figs. 1 and 2 show that the first band of cis-Rh ox₂Cl₂-3 and cis-Rh py₂Cl₄ definitely do not exhibit splittings amounting to 1 900 and 1 600 K, respectively. Analogously, the first band 1 of Rh(NH₃)₅I⁺⁺ is only split 1 700 K, while the difference between the first band of Rh(NH₃)₅I⁺⁺ and the hypothetical RhI₆-3 must be over 15 000 K (Rh(NH₃)₅I⁺⁺ is remarkable by having a negative cubic contribution 3 of the iodide, since the wavenumber of the first band is less than 5/6 of that of Rh(NH₃)₆+++). The tetragonality effect, calculated for trans-M A₄B₂ is thus only ≤ 0.22 for Rh(NH₃)₅I⁺⁺ and 0.32 for trans-Rh py₂Cl₄ multiplied by the differences in cubic ligand field strengths, while most electrostatic models would have presumed this ratio near to or above 1. #### **EXPERIMENTAL** The absorption spectra were measured at 25°C on a Cary recording spectrophotometer 11 MS-50. Since many of the measured compounds are so rare, several samples were weighed and transferred to the 1 cm absorption cell, which by weighing was found to contain 3.1 ml. Subsequent dilutions were performed with A. Krogh's syringe-pipettes. The high absorption bands ($\epsilon_{\rm n} \sim \! 10~000$) were redetermined with solutions of weighed portions $\sim \! 5$ mg in 50 ml or 250 ml measuring flasks. The ligand field bands ($\varepsilon_n = 10-200$) were measured with solutions, 0.01-0.03 M. The aqueous solutions of chloro-complexes were measured twice within 10 min (as the other complexes) and one and four days later. Only during at least several days were aquation effects observed of complexes with at most four chloride ligands. The complexes Ir $py_1(NH_2)_1Cl_2^+$, Ir $py_2(NH_3)_2Cl_2^+$ and Ir $py(NH_2)_4Cl_1^+$ were measured in 2 M NH₃ without showing changes of spectra, which might be caused by acidity of the amine groups. The titration curves were measured on a Radiometer glass-electrode pH-meter M 22. It was assumed that the crystalline compounds have the compositions, indicated by M. Delépine: $\begin{array}{l} \textit{cis-}K_s[Rh\ ox_sCl_s], H_2O\\ \textit{trans-}K_s[Rh\ ox_sCl_s], 4H_2O\\ \textit{cis-}K[Rh\ py_sCl_d], H_2O\\ \textit{trans-}K[Rh\ py_sCl_d], H_2O\\ 1,2,6-Rh\ py_sCl_s[Rh\ py_sCl_d]Cl,6H_3O\\ K_s[Ir\ ox_sCl_d], H_2O\\ \textit{cis-}K_s[Ir\ ox_sCl_s], H_2O\ (racemic)\\ \textit{trans-}K_s[Ir\ ox_sCl_s], 6\ H_2O\\ K_s[Ir\ ox_s], 4.5\ H_2O\ (racemic)\\ K[Ir\ pyCl_s]\\ K_s[Ir\ pyCl_d], 3\ H_2O\\ \textit{cis-}K[Ir\ py_sCl_d], H_2O\\ \textit{trans-}K[Ir\ py_sCl_d], H_2O\\ \textit{trans-}K[Ir\ py_sCl_d], H_2O\\ 1,2,3-Ir\ py_sCl_s\\ \end{array}$ 1,2,6-Ir py₂Cl₃ [Ir py₄Cl₃]Cl,6 H₂O Ir py₅Cl₃(H₁O),2 H₂O (cis, sun) Ir py₂Cl₃(H₂O) (cis, autoclave) [Ir py₆Cl₃((H₂O)],H₂O (trans) [Ir py₁(NH₂),Cl]Cl₂2 H₂O [Ir py₄(NH₃),H₁O]Cl₃ [Ir py₄(NH₃),Cl]Cl₂,4 H₂O [Ir py₄(NH₃),Cl]Cl,H₂O Na₂[Ir Br₆],12 H₂O K₃[Ir Br₆],4 H₂O K₄[Ir Br₆],4 H₂O NH₄[Ir py₁Br₄],H₂O NH₄[Ir py₂Br₄],H₂O 1,2,3-Ir py₃Br₄ 1,2,6-Ir py₃Br₃ Cf. also the review of the chemistry of iridium, written by Professor M. Delépine in Paul Pascal: Traité de la Chimie Minerale, Paris 1932, Vol. 11, p. 443-527. Acknowledgements. I am very much indebted to Marcel Delépine, Professor of Collège de France for his generous present of the rhodium and iridium complexes, which he has investigated for so many years, and which are so valuable for theoretical reasons because of the robustness of their geometrical isomers. I express also my gratitude to Madame Madeleine Delépine-Tard for the bromo- and bromo-pyridine iridium(III) complexes. Finally, I thank Professor Jannik Bjerrum and Mr. Claus E. Schäffer for valuable discussions, and Mr. Kjeld Rasmussen for assistance with some of the measurements. #### REFERENCES Jørgensen, C. Klixbüll, Acta Chem. Scand. 10 (1956) 500. Bethe, H. Ann. Physik [5] 3 (1929) 133. 3. Ballhausen, C. J. and Jørgensen C. Klixbüll, Kgl. Danske Videnskab. Selskab, Mat.fys. Medd. 29 (1955) No. 14. 4. Jordahl, O. M. Phys. Rev. 45 (1934) 87. - 5. Bjerrum, J., Ballhausen, C. J. and Jørgensen, C. Klixbüll, Acta Chem. Scand. 8 (1954) 1275. - 6. Ballhausen, C. J. Kgl. Danske Videnskab. Selskab. Mat. tys. Medd. 29 (1954) No. 4. 7. Belford, R. L. Bonding and Spectra of Metal Chelates. Thesis 1955. University of California (UCRL - 3051). 8. Jørgensen, C. Klixbüll, Acta Chem. Scand. 9 (1955) 405. 9. Bjerrum, J. and Jørgensen, C. Klixbüll, Rec. trav. chim. 75 (1956) 658. - 10. Ballhausen, C. J. Kgl. Danske Videnskab.Selskab. Mat.fys. Medd. 29 (1955) No. 8. 11. Jørgensen, C. Klixbüll, Acta Chem. Scand. 9 (1955) 1362. - 12. Jørgensen, C. Klixbüll, Acta Chem. Scand. 10 (1956) 887. - Hartmann, H. and Kruse, H. H. Z. physik. Chem. 5 (1955) 9. Linhard, M. and Weigel, M. Z. anorg. Chem. 266 (1951) 49. Linhard, M. and Weigel, M. Z. anorg. Chem. 264 (1951) 321. 16. Orgel, L. E. J. Chem. Soc. 1952 4756. - 17. Basolo, F., Ballhausen, C. J. and Bjerrum, J. Acta Chem. Scand. 9 (1955) 810. - 18. Yamada, S., Nakahara, A., Shimura, Y. and Tsuchida, R. Bull. Chem. Soc. Japan 28 (1955) 222. - 19. Delépine, M. Bull. soc. chim. France 29 (1921) 656. - 20. Delépine, M. Bull. soc. chim. France 45 (1929) 235. - 21. Jørgensen, S. M. J. prakt. Chem. 27 (1885) 478. 22. Delépine, M. Compt. rend. 236 (1953) 559. - Bjerrum, J. and Rasmussen, S. E. Acta Chem. Scand. 6 (1952) 1265. Vezes, M. and Duffour, A. Bull. soc. chim. France 5 (1909) 869, 872. 25. Delépine, M. Ann. Chim. [9] 19 (1923) 145. 26. Babaeva, A. V. and Mosyagina, M. A. Doklady Akad. Nauk SSSR 64 (1949) 823. - Delépine, M. Ann. Chim. [9] 19 (1923) 5. Delépine, M. Z. anorg. Chem. 130 (1927) 222. Delépine, M. Compt. rend. 233 (1951) 1156; 233 (1951) 1533; 234 (1952) 1721; 236 (1953) 1713; 238 (1954) 27; 240 (1955) 2468; 248 (1956) 27. - 30. Delépine, M. and Pineau, J. Bull. soc. chim. France 45 (1929) 228. - Delépine, M. Ann. Chim [9] 7 (1917) 277, 320. Jørgensen, C. Klixbüll, Acta Chem. Scand. 10 (1956) 518. Delépine, M. Bull. soc. chim. France 9 (1911) 771. Inamura, Y. and Kondo, Y. J. Chem. Soc. Japan 72 (1951) 787, 840. - 35. Jørgensen, S. M. J. prakt. Chem. 33 (1886) 507, 531; Z. anorg. Chem. 25 (1900) 357. 36. Tanabe, Y. and Sugano, S. J. Phys. Soc. Japan 9 (1954) 753, 766. 37. Delépine-Tard, M. Ann. Chim. [11] 4 (1935) 283, 292. 38. Ballhausen, C. J. and Moffitt, W. J. Inorg. Nucl. Chem. 3 (1956) 178. 39. Delépine, M. Ann. Chim. [11] 4 (1935) 271. Received October 12, 1956.