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On Equilibria in Systems with Polynuclear Complex

Formation

IV. The Transition from Polynuclear to Mononuclear Products
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The behavior of Z (average number of A bound per B) as a function
of log a and log B is discussed for a system, where both mononuclear
complexes A;B and polynuclear “core + links” complexes B(A;B),
oxist. At high values of B, the family of curves Z(log a)g are parallel
with & constant spacing. With decreasing values of B they approach
to a limiting curve Z(log a), the mononuclear wall”’. The transition
range from & predominantly polynuclear to a predominantly mono-
nuclear mechanism may be only about two units in log B.

Normalized projection maps’ and numerical methods are given
for finding the first or first two mononuclear constants. The corres-
ponding treatment of the function # is indicated.

In our studies of hydrolysis equilibria !, the data have often indicated the
formation of “’core + links” complexes, ¢. e. complexes that can be written
in the general form B(A,B),, where ¢ is a constant and = may have one or seve-
ral values. For B = cation, and A = OH ", examples of this type of complex
are UO,((OH),UO,)>+ and In((OH),In)@+"+. The occurrence of such com-
plexes was one reason for treating them rather thoroughly in the papers
”AB I’’? and ”AB II’’%; in the following we shall use, as a rule, the notation of
these papers. (See ’Symbols” below). ‘

When ”core + links” complexes of the type B(A,B), predominate, the
curves Z(log a), are parallel, and Z (the average number of A bound per B)
is a function of (AB I, eqn. 26)

z=tlog a + log B (1)

A plot of Z against log a’B may thus be used as an experimental test of this
type of mechanism; if the correct value of ¢ has been chosen, the points should
fall on a single curve, irrespective of the value of B.

In several systems, the data for high values of B are explained by a "’core
+ links” mechanism, within the experimental accuracy, whereas for low values
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of B deviations are observed which might be explained by the formation of
species richer in A than B(A,B),, such as AB(A,B), and B(A;;1B),.

If B is made sufficiently low, one may always expect that the concentra-
tions of mononuclear complexes A;B will become appreciable in comparison
with those of polynuclear complexes, and finally predominate completely. The
aim of the present paper is to discuss the behavior of the experimental quanti-
ties Z and n = log (B b™) in a transition range where both mononuclear and
polynuclear core + links” complexes exist in comparable amounts, and to
indicate methods for the evaluation of data from such a transition range.

Symbols

8
o

concentrations of free A and B

total concentration of B

normalized B (12)

function for polynuclear complexes (7)

number of hga.mgl in mononuclear complex A;B (3)
constant, ratio k. ,/k, with hypothesis IIIa (18)
constant, k,/k in hypothesis I11a (18)

equilibrium constant (2)

Bibi7? (27)

number of links in polynuclear complex B(A;B),, (2)
number of A in link A;B

auxiliary function, a*b (2a)

katb (8)

normalized values for x and y, particularly (13), (14)
variables determined experimentally, particularly (1), (15)
average number of A bound per B

normalized a (10)

equilibrium constant for mononuclear complexes (3)
= log B—logb
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General equations

Let us assume that A and B form two series of complexes: polynuclear
species B(A,B), and mononuclear species A;B, and that the equilibrium con-
stants of their formation are k, and g;, thus

n A+ (n+1) B2 BAB): [BAB)]=bkw (2
u = a'b (2a)

and
t A+ B AB; [A;B] = bpia* (3)

The total concentration of B, and the concentration of A bound to B, will
be expressed by

B=[B]+Z[AB]+Z(n+1) [B(AB),]=b(1+Efia+-Z (n-+ 1)kyu")=b107 (4)

BZ = Xi [A;B] + Znt [B(AB),] = b (Zifd* + t Znk,u") (6)
Introducmg from AB II3 the symbols

v = ku = ka'b - ()

Cgv) =2 kbt v %% =g =2 nkau (7)
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POLYNUCLEAR COMPLEXES IV 1013

we obtain from (4) and (5)
B=5b (14 2pa’+ g+ vg) (8)
BZ = b (Xifa’ + tvg’) 9)

In AB I3, expressions for g(v) have been derived for a few simple hypo-
theses: I (no soluble complex, precipitate formed), II (a single complex for-
med, with n = N), and III (complexes with all values of n are formed, three
different simple assumptions about the k,). In the following we shall
treat the simple cases, where only one or two mononuclear complexes
are formed, and shall calculate diagrams for the additional simple assumption
that the polynuclear complexity constants follow hypothesis IITa’’ 2, with an
integer {. On these assumptions it seems possible to explain approximately
the experimental data for the hydrolysis of scandium (IIT)45 and uranium(IV)S.
Even in more complicated cases the behavior should be analogous, and a
similar mathematical treatment could be applied.

ONLY ONE MONONUCLEAR COMPLEX

If only one mononuclear complex, AB, is formed, all 8, = 0 except §,;.
To eliminate the constant §;, we introduce the auxiliary ’normalized’ variable

¢ = fa (10)
‘Then (8) and (9) take the form
B=b(1+a+g-+vg') BZ = b (o + tvg’) (8a, 9a)
Hence
7 — a + tvg 11
l+a+g+ v ()

Multiplying B by k g1 ‘we obtain a new function, B, which like Z is a function
.of v and ¢ only and does not contain the constants £ and g, (8a, 10, 6):

B=BEkpfr=va'(l+a+g+og) (12)

If the constant ¢ and the function g(v) (including constants like %, below)
are known, one may use (11) and (12) and suitable values of the auxiliary
variable v to calculate corresponding values of @ and B for a series of fixed
values of Z. These figures may be used for plotting projection maps Y (X)z,
for the variables

X =1Ilog (B a)=1log B+tloga-+logbk=x+1logk (13)
Y=1log B=1log B+1log k —tlog f;=y-+1log k—1tlog 5, (14)

As seen from (13) and (14) X and Y are normalized variables 7,8 correspond-
ing to the experimental variables

x=1log B+t log a; y=1log B (15)
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stem A-—B with a single mono-
es B(A,B),, hypothesis I1la,

1014
Fig. 1 and Fig. 2. Variation of Z with other variables for a
nuclear complex AB, and polynuclear core + links’ comp
ko = 6.
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Fig. la. Projection map of Y(X)z, with Fig. 1b. Family of curves Z(X)g. For log B
Y = log Band X = log (a*B). > 1, the curves practically coincide with the
limiting curve.
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Fig. 2a. Projection map log B(log a),. Fig. 2b. Family of curves Z(log a)p. For
log B < — 1.5, the curves practically coincide
weth the limiting curve, the mononuclear
wall”.
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Fig. 3. Family of curves Z(log a)p calculated ‘
),‘gr single mononuclear complex - polynuclear . 4 I?g a
II1a> complexes with t=—=3, ky = 0.06. 3.0 20 "y 2.0

The following formulas are useful for the calculations, (11, 12, 13)

_ Z , tvg'
¢e=F3—"p (L+g+v9)— 35 (16)

X=1logv+log[l+g—vg (t—1)]—log (1—2Z) (17)

Diagrams for single mononuclear complex + hypo-
thesis IIIa

In Fig. la, a projection map is given of log B(X); calculated usmg (18, 14,
16, 17) assuming hypothesis IIIa’’ 3,

k, = ky k* - (18)

with ¢ = 2 and k, = 5. These values give a good agreement with the data for
scandium (I1T) 4,5,

Hypothesis ITIa with integer ¢ would give (AB II3, eqn. 31)
g(v) = ke (1—v)% v9'(v) = kov(l—v)™* (18a)

The irregular shape of the curves for Z = 0.99, 1.00, and 1.20 in Fig. 1a should be dis-
regarded. It is due to the fact that with the reactions assumed, the mononuclear complex
can give at most Z = 1, whereas with polynuclear complexes, higher values of Z can be
achieved. The case of a non-integer ¢ has been treated by Rossotti and Rossotti °.

The same values of ¢ and k, have been used to construct the diagrams
Z(X)g (Fig. 1b), log B(log )z (Flg 2a), and Z (log @) (Fig. 2b). When consider-
ing these diagrams one should remember that the normalized variables X = log
(o’B), log B, and log « differ from the experimental varla,bles x = log (a'B),
log B, and log a, only by constant terms (13, 14, 10).
For high total concentrations B, the polynuclear complexes predominate
and Z is a function of = only (vertlcal lines in upper part of Fig. la, limiting
curve Z(X) to the right of Fig. 1b, constant spacing in Fig. 2b). For very low
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values of B, on the other hand, the polynuclear complexes become negligible in
comparison with the mononuclear complexes. Then Z is effectively a function
of a only (vertical lines in lower part of Fig. 2a, lines of slope 1 in lower part of
Fig. 1a). The limiting curve Z(log ) is referred to as the mononuclear wall”,
(Fig. 2b), since with decreasing B the curves Z (log e¢)s approach to it inde-
finitely but never pass it. For intermediate values of B there is a transition
range, of a breadth of 2—3 units in log B. This range of transition from a
practically mononuclear reaction (within ordinary experimental errors) to a
practically pure “’core - links’ reaction may seem surprisingly narrow, which
may partly be due to the fact that in Fig. 2b the polynuclear and mononuclear
curves have a rather similar shape.

Fig. 3 shows Z(log a)p calculated for ¢ = 3 and hypothesis IIIa with
ky = 0.06; these values describe approximately the hydrolysis of uranium(IV)e.
Here the polynuclear curves are steeper, and the transition range in log B
is much broader.

Similar behavior would be expected for the function Z(log ¢)z on transition
between a mononuclear reaction and polynuclear reactions of other types, and

also for the function %(log @)z, where = log % (see (4)).

Evaluation of data by normalized projection map

In very favorable systems, the experiments cover a range of B such that
at low values of B the mononuclear, at high values of B the polynuclear pro-
cesses predominate. Then approximate equilibrium constants for both pro-
cesses can be calculated separately, and refined values may be obtained by
considering, at each end, the other process as a small disturbance. Such a
procedure was possible for the hydrolysis of iron(III) (Hedstrom!®) and in-
dium(III) (Biedermann!!). These cases were additionally favorable in that
both the free concentrations a and b could be measured.

In other systems, the polynuclear process certainly predominates at high
values for B, so that one may use the methods in AB II® to find a mechanism
that gives a good agreement, and an approximate value for log k. At low
values for B, deviations from the ’core - links’’ curve are observed; however,
the mononuclear process is too small a disturbance to be treated independently.

In such cases, the accuracy of the data may not allow one to determine
more than one equilibrium constant for the mononuclear reactions; it has
seemed reasonable to start by assuming that the first mononuclear complex
AB is formed and testing this assumption by “’surface-fitting”’, using project-
ion maps.

To find the formation constant g, for this complex, and a refined value of
log k, one may plot the experimental data in the form y(x)z, (15), and move this
projection map parallel with the axes on a calculated normalized plot Y (X)z,
(13, 14), until the best agreement is found. From the coordinates z, = »—X
and y, = y—Y = log B—log B of the points coinciding with the point X = 0,
Y = 0, one may then find the best values for log k£ and log $,, using (13) and
(14). An example is given in Fig. 4a, where the experimental values of Kil-
patrick and Pokras4 (dots) are shown in the position of best fit with caleulated
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Fig. 4. “Surface-fitting” of Kilpatrick’s and Pokras’ data for scandium(I1I) hydrolysis ¢
(dots), plotted as log B(log h=* B),. Curves :projection map log B(X), in best fit; a) only

one mononuclear complex, ky = §: log B, = —5.02 and log k = —6.85. The curves are the
same as in Fig. 1a but on a larger scale. b) two mononuclear complexesl = 1:log p, = —b.1,
log By = —10.2 and log k = —6.87.

curves for a single mononuclear complex - hypothesis ITla with 4, = 5. In
this case, ¥, = 6.85 and y, = —3.15, which give log k¥ = —6.85 and log 8, =
= —5.0.

Numerical approach

One may use a numerical approach to find g, if the equilibrium constants
k, of the polynuclear reactions are known, or, which is the same, if k and g(v)
are known. If there is only one mononuclear complex, one may conveniently
start with (8a), (9a) and (6) and eliminate b and a to find

a'B(1—Z) = k(1 + g—(t—1)vg’) (19)

Thus a'B (1—Z) is a function of v only. Using the known % and g(v) one may
calculate and plot the expression to the right of (19) as a function of v. For
each experimental point one may then calculate a‘B (1—Z) from the experim-
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ental data, read off the value of v from the plot of (19), and use it to calculate
(9, 8) pp=a3 (@ BZkvi—tvyg) ‘ (20)

This can be done for a series of experimental points, and the average value
of B; is taken. This method was used in the study of the Cu* hydrolysis 2.

Treatment of data (a,b, B)

If both a and b are measured and ¢ is known, one may calculate u = a*b
for each point. Now from (4)

n=log 2 =log (1+Z4d+Zm+1) k) (21)

In this case, one may also treat mechanisms with more than one mono-
nuclear complex in a comparatively simple manner. Assuming, however, that
we need consider only one mononuclear complex, AB, (21) takes the form

n=log(l4+a+g+vyg) (22)

If g(v) is known, one may easily calculate a normalized projection map
log v(log @), for a set of values of 5 and log v. This could be fitted to an ex-
perimental diagram log u(log a),. The position of best agreement gives (6, 10)

log k¥ = log v—Ilog wu; log By = log a—log a (23)

Alternatively one may calculate X(log @), and compare with the experi-
mental z(log a),. From (13), and (8)

X=logv+n=x+loghk; a=101—(1+g-+2v9)=pa (24)

So, by keeping # constant and varying v we may obtain sets of correspond-
ing values for X and a.

To construct log u(log a), one may draw the primary graphs (log a); and
log u(log a)g, read the log a values for round values of # in the first diagram,
mark out these points on corresponding curves inthe second diagram, and
finally join the points with the same % values in the latter diagram. The plot
z(log a)y is constructed in an analogous way.

TWO MONONUCLEAR COMPLEXES

Graphical method

If, in addition to AB, the second mononuclear complex A,B must also be
considered, there will be an additional term bf,a® in (8) and 2 bf,a® in (9).
Defining the normalized functions ¢ and B as before, (10, 12), we find from

(8) and (9)
B = va?*(l+4+a+1la+g+vg) (25)
BZ = vata 4+ 21 o® + tvg’) (26)
1 = - (27)
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We may construct one normalized projection map log B(X); for each value
of 1 to be tested, and search for the best fit with the experimental data
log B(z)z, or alternatively construct log B (log «); and compare it with

log B (log a);.

Elimination of B from (25) and (26) leads to a second-degree equation in a, from which
we get an explicit expression for a(v,Z). Inserting this into (25) we find explicit expres-
sions for B(v,Z) and X = log Ba¥v,Z). If the values of these functions are calculated for
a series of values of v and Z, one may obtain the plots log B(X)z and log B(log a)z.

Alternatively we may construct intermediate plots of curves X = log Baf(v)z, log
B(g)gK and Z(v)q, by means of (25) and (26), and read off corresponding values of B, Z,
an or a.

Fig. 4 gives the projection map log B(X), for k, = 5 and I = 0 (Fig. 4a) or
I = 1 (Fig. 4b) and the data for scandium(III). The agreement is improved by
introducing the second complex.

It is true that we will have to construct as many projection maps as we
want to test values for . On the other hand, once this work is done, the ’surface
fitting’’ has several advantages over other methods (such as successive approx-
imation) which might be devised. The normalized projection maps may be
compared with a plot of experimental data, like log B(log @)z, where one may
still retain a feeling for the influence of experimental errors, so that one may
see whether a certain agreement is satisfactory or not. It is an important
advantage with this method that the same experimental plot log B(log a)z
may also be used for testing other mechanisms that might be considered. One
may then see where the significant differences between the various mechanisms
arise, and whether the data suffice to make a certain decision between them.
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