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Some Graphical Methods for Determining Equilibrium
Constants. IV. On Methods for Three-Variable Data w(x, y)

LARS GUNNAR SILLEN
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The treatment in part II! is extended to indicate graphical
methods of determining a number of unknown constants (parameters)
Py Py . . . from a set of three-variable data (w, x, y) when the function
w(z, Y, P1s P2...) is known.

Sometimes, by transformation of variables a true reduction to
& two-variable problem is possible. In other cases the function can
be transformed to w(xz, fi(y), fa(y)...). By considering sections at
constant values of y, the parameters may then be found by two suc-
cessive two-variable treatments. The method is illustrated by appli-
cation to extraction equilibria of complexes of the general formula
B(HA)(H).,. . .

When a reduction to two variables is not possible, methods of
"surface-fitting’’ may be applied, if the parameters can be eliminated
by normalizing the variables. For instance, with two variables and
two parameters one may fit & calculated projection map Y(X)w
to an experimental projection map y(z)w. Convenient normalized
variables are given for a system with species B, AB, and ApBg, as an
example.

b Applications will be given in following papers on hydrolysis equi-
ibria.

In part II of this series ! various ways were discussed of treating two-
variable experimental data, ¢. e. data that can be represented by a planar
diagram y(x), where y and z are functions that can be obtained du'ectly from
the experimental data.

More complicated cases arise if the experimental points are sets of three
variables. For example, in the study of polynuclear complexes formed between
two reagents A and B, the average number of A bound per B, Z, is often mea-
sured together with a, the concentration of free A, and B, the total concentra-
tion of B, so that each experimental point is a set (Z, @, B). The data can
thus be represented by a curved surface in three-dimensional space, Z(a, B).
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- We shall consider a general case where the variables determined experi-
mentally are w, x, and y (we shall not use the symbol z to avoid confusion with
Z), and the constants to be determined (parameters) are denoted by p,, p, ... .
We know in advance the function

w=w, Y, P, P3.-.) (1)

relating the experimental variables with the parameters. As in part II, w, =,
and y need not be the quantities directly determined, although it should be
possible to calculate them from the data; nor need the p; be the constants
ultimately required. The most suitable functions w, z, y and parameters p;
for each case may not be immediately obvious.

SYMBOLS
a, b concentrations of free A and B
B total concentration of B
¢ concentration of free HA (5)
fs» fn functions (2), (8)
h concentration of H+ (5)
) ~ constant (16)
Kpn, Kyy, Kpg equilibrium constants (3), (12)
LoNn distribution constants (4)
N? charge of metal ion BN+
n, p, P, Q integer numbers (3), (12)
Py P2 Ps unknown constants (parameters) to be determined
q over-all distribution ratio of B between organic and aqueous phase
u, v auxiliary functions (15), (16)
w, x, Y variables determined experimentally
w, X, Y normalized values for w, , y
Loy Yo values for x and y coinciding with X = 0, ¥ = 0 at best fit (18, 19)
Z average number of A bound per B

subscript)s indicates that z is constant

. REDUCTION TO A TWO-VARIABLE PROBLEM

True reduction

In some cases an analysis of the data shows that one may definitely reduce
the problem to one with only two variables. Three simple examples will be
given.

In the formation of mononuclear complexes A,B by a central group B and
a ligand A, the experimental variables may be, for instance, (Z, a, B) or
(@, b, B). Now, if only mononuclear complexes are formed, it is easily shown
(N. Bjerrum 2) that both Z and B! are functions of @ only. (Also for “homo-
nuclear’ complexes 3 Z (but not 6B71) is a function of a only.) So the total
concentration B is eliminated, and we are left with the two-variable problem
of finding the equilibrium constants from the functions Z(a) or bB* (a). For
refined mathematical treatment, further transformations of the variables are
usually necessary 1,4,
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If, again, all complexes formed are polynuclear and can be written in the
”core + links” form, B(A,B),, then Z and 6B can be written 3,° as functions
of the single variable x = ¢ log a 4 log B.

Another example is the distribution of a metal ion B, between an aqueous
solution and an organic solvent, in the presence of an acid HA, forming com-
plexes like A,B. We shall denote by ¢ the ratio between the total concentra-
tions of B in the organic and aqueous phases. One might first consider this as
a problem of four variables, say g (the distribution ratio), B (the total con-
centration of B in the aqueous phase), and the concentrations of free H*
and HA in the aqueous phase. If only mononuclear complexes are formed, the
total concentration B should, however, have no influence on ¢([H*], [HA]).
If, moreover, all complexes in the aqueous phase are of the form A,B and only
the uncharged AyB is extracted, then ¢ should be a function of the concentra-
tion of free A only, a = [A] = [HAJ[H*] K., so that we really have the two-
variable problem 87 of studying g(a). If, on the other hand, not AyB but a
single complex AyB(HA),_y ‘is extracted, then g[HA]"? is a function of a only.

For each of these cases, one may apply the methods for two-variable data
given in part II1.

Reduction to two-variable sections

Sometimes it proves impossible by any transformation, truly to reduce
three-variable data (w, z, ) to two variables. However one may cut sections
at constant values of y (say) and treat each of these as a two-variable problem.
Suppose that we can transform equation (1) to the form

w = 'w(x, fl(y), f2(y)! .. ') (2)

where the functions f;(y) contain the variable ¥, and usually a number of un-
known constants. If a section w(x), at a constant value of y is considered, the
functions f; are constants, which can be found by some method for two-
variable problems given in part II'. Thus one may determine the values of
f1, fs ete. for a number of values of y. Finally, the functions f;(y) are treated
separately; each of these functions contains one or more parameters, which
can now be determined by some two-variable method.

As an example, we shall consider a case previously treated somewhat
differently by Rydberg 8. A metal ion B is distributed between an aqueous
solution and an organic solvent, in the presence of an acid HA, which may
form complexes with B. All those complexes present may be written in the
form B(HA),(H)._,, since their content of organic solvent, water or ions from
the ionic medium cannot be determined by equilibrium measurements. (We
replace Rydberg’s symbols z and y by p and = to avoid confusion in the present
paper.) :

If the charge of the ion B is N+, it is reasonable to assume that only un-
charged complexes, with » = N, are extracted by the organic solvent. We
may then write, assuming only mononuclear complexes:

[B(HA),(H)_p]oq = [BIHAY[H]"Kpn = bPh™" Ky (3)
[(B(HA)p(H)_nJorg = [BIHAY[HI ™ KpnLpny = b’ KypnLypy (4)
Acta Chem. Scand. 10 (1956) No. 5



806 LARS GUNNAR SILLEN

where K,, are the formation constants, and L,y the distribution constants of
the complexes, and
¢ = [HA] and b = [H*] (5)

The over-all distribution ratio ¢ is given by
_ Z[B(HA)P(H)-N]org L Xci’h'NKpNLpN (6)
1= FSBEAH) g = 22k Ky,

Thus g(c, k) is a function of ¢ and . We may, however, obtain two-variable
sections by studying instead the variable

2EXh K,
-13-N ___ n — —
q k _Zc#KﬁNLpN Zh fn(c) (7)
XKy _ XKy,
fale) = z—vcm 5 fole) = ZGWL;; (8)

If ¢ is kept constant, (7) gives a polynomial in 2. Each section can thus
be used to find the values for the functions f,(c) at the value of ¢ chosen. Ryd-
berg 8 has used a single “sweep’’ 1, with successive linear extrapolations. How-
ever, it may be preferable to study the function w(z),

w = log(g"th™N) = log Zh™"f,; x =log h (9)

and find the best values of f,(c) by use of the curve-fitting methods for poly-
nomials, described in part IT1.

The treatment of the data f,(c) so obtained, will depend on the accuracy
of the data and the range of concentrations studied.

It seems a reasonable assumption ® that complexes B(HA)Y* can be neglec-
ted, so that K,, = 0 for p + 0. By definition, K, = 1. Then, asindicated by
Rydberg (whose symbols are slightly different), it is profitable to study the
functions

fo e) = ZKpnLync? (10)

fale)foHe) = ZKpuc? (11)

To find the individual * constants K,, and L,y one may use the curve-
fitting methods for polynomials, for instance preparing plots of log f,™* (or,
say, log(c™f,™)), and log f,fo™* (or,say,log(c™f,f, ™), as functions of log ¢, and
comparing them with families of normalized curves for polynomials!. Such
methods seem preferable to linear plots, for the same reasons as given in
part I1'. Hok-Bernstrom ® has recently applied this method to extraction
data for UO2+.

As a rule, partition data will allow an independent determination of only
a few equilibrium constants, and it may be wise to start by searching for the
smallest set of complexes B(HA),(H)_, needed to explain the data. With the
eurve-fitting methods given, one may compare the same graphical representa-

* If [ApBHp_n] is important in the organic phase but negligible in the aqueous solution,
only the product KpnLpN may be obtained.
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tion of the data with curves for a number of possible combinations. One may
then judge — more directly than with linear plots — which combinations.
can be excluded, which are just compatible with the data, and which will
give the best fit.

METHODS WITHOUT REDUCTION

Elimination

1f one is not successful in reducing a three-variable problem to two-variable
plots, the problem becomes slightly more complicated. A survey of the
possible methods is given in Table 1, which is analogous to Table 1 of part IT 1.

With only one parameter, p,, a value for this parameter is obtained by
inserting the coordinates of each experimental point (w, z, y) into eqn. (1).
To test for the spread and any trend in the values of p;, one would need a
three-dimensional diagram (z, y, p,), which could be given in the form of
curves p,(x),. If p, is really a constant, then these curves will all coincide in &
single horizontal line.

Similarily, with two or three parameters, the graphs will not be more com-
plicated than for two-variable data with two or three parameters, provided
one does not want to test for a trend. With two parameters, one may for
instance use curves Po(P;)sy-

Normalized graphs

With three variables, more serious complications occur in using normalized
graphs, as indicated in Table 1. For instance, with two parameters, and two
normalized variables, one can no longer use a single curve Y (X) to compare
with the data y(x), but must instead compare a curved surface in space
w(x, y) with another, w(X, Y). In practice this is done by preparing a projec-

Table 1. Methods for finding unknown constants pi from experimental data w(x, y).

Compare
Number of (w, z, y) Eliminate w | Two-dimensional
graph with to give projections,
normalized calculated graph e. g.
parameters variables graph
1 () ‘1 () w, X, y Y(X)w and y(z)w
0 % Y P P71 (%)
2 (x, ¥) w, X, Y Y (X )wand y()w
2(1717 Pa) {1 (x) : w, X, Y, P2 - .
0 z, ¥y, P1, Pz | intersection of
curves P, (p1) =y
3 (w, z, y) wW,X, Y Y(X)wendy(z)w
3(?1! DPs» P:) 2 (x’ y) w, X, Y, Ps -
1 (x) w, Xs Y> P2 Ps -
Lo %, Y» P1> Pss Ps -
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Fig. 1. “Surface-fitting” with three parameters. Curves = calculated projection map

Y(X)w for W =0, 1, 2, 3, 4 (thick curves) and intermediate values, with a spacing of

0.2 units (thin curves ). Circles: experimental points y(x)w for w = 6.0, 7.0, 8.0, and 9.0,

tn the position of best fit. The parameter p;, = W — w in this case 18 around —5.6. — From

the di};:remea between normalized and experimental variables one could also find the two

other parameters, p, = X — x and p, = Y — y. These coordinate scales have not been
marked out in the figure.

tion map with Y(X), curves for a number of values of w, and comparing it
with the experimental data, given as curves y(z), with the same values for w.
"The additional work involved should be a strong incentive to reduce the
problem to a two-variable one. However, it will be shown in subsequent papers
that if necessary such surface-fitting” operations may be carried through
successfully. .

With three variables, a problem with one parameter and one normalized
variable also requires the surface-fitting” of a projection map y(z), of the
data and a normalized one y(X), with calculated curves.

With three parameters and three normalized variables, one should fit a
normalized surface W(X, Y) to the plot w(z, y) of the experimental data.
This could possibly be carried out on three-dimensional models. When one
tries to find the best fit of two-dimensional projections Y(X)y for a number
of values of, W and y(x), for a number of values of w, a difficulty arises: in
the best fit, the experimental points may in general fall somewhere midway
between the calculated curves. It might be practical to use a constant spacing
of w in the experimental plot, and draw a set of thicker calculated curves with
the same spacing in W; between these one may insert a series of thinner calcu-
- lated curves for intermediate values of W (Fig. 1).
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The other types of systems in Table 1 lead us to consider four-dimensional
or five-dimensional super-surfaces, so that successive approximations and
“’sweeping’’ must be resorted tol.

Application to systems with two equilibrium
constants

As a simple example, let us assume that the reagents A and B form the
two complexes AB and ApBg, where P and @ are known, and that we want to
determine the formation constants K,; and Kpy from experimental data

Z(a’Ff)l;a the definitions of B and Z, and the law of mass action we have
B = [B] 4 [AB] + Q[ArBg] = b + abK,, + QarbKpy (12)
= [AB] + P[ArBg] = abK; -+ PaPb®Kpg (13)
Now, it is convenient to use the experimental variables
w=2; x=1log a; y=1log B , (14)
and the normalized variables '
X=x+p; Y=y+p (15)
Let us first introduce the auxiliary variables
u=10X=a-10%; v = bj (16)

where § is a constant. We wish to give such values to p,, p, and j that all
equilibrium constants are removed from (12) and (13), thus

= log(v + wv + QuP?) (12a)
Y + log w = log(uv+Pu*?) (13a)
Comparison with equations (12) to (16) gives us

Py = log Kyy; py = Q 7 (log Kpg— P log Kyy) =log j  (17)

The procedure is then to construct a map Y(X), for a series of values of
w, using (12a), (16), and (13a), and to plot the experimental data y(x), ¢. €.
log B(log a)z, for the same values of w. The plots are moved parallel to the
coordinate axes until the best fit is found. One may then read the coordinates
of the point (%,, y,) coinciding with (X = 0, ¥ = 0), which give us

%y =—p = —log Ky (18)
Yo = —DPg =- Q 1 (log Kpo — P log Kj,) . (19)

The curve Y(X)» may be calculated in two ways. One may plot curves w (v )« and
Y (v)u inserting a series of values for » and v into (12a) and (13a). Then, for each value of
w considered one may take sets of corresponding values v (% )w, and insert them into the
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Y plot which gives Y (u )w or Y (X )w since X = log u (16). One may also eliminate v
from (12a) and (13a), which gives

@=1Y = (Q—1)log(P+u(P—Q)) + log(w+uw—u) — Q log(P—Qw)—P log u  (20)
Thus for each set of values of w and X = log « one may calculate Y directly.
If experimental data (a, b, B) are available instead, we may use the same

experimental, normalized and auxiliary variables as in (14, 15, 16, 17) with the
exception of w:

z=1Ilog a; X =x + p;; p =log Ky, (21)
1
y=log B, Y=y + py ;=137 (log Kpo—Plog K;))  (22)
u=10=a-10; v =0bj=b.10% (23)
Y =log(v + uv + QuFv?) (12a)

As the third experimental variable it is convenient to use the dimension-
less quantity log(Bb™) denoted by % in previous papers 5. From (22), (23),
and (12a)

w=log—?=y+p2——log v=Y—log v (24)
w = log(1 + u + QuFve1) (25)

The normalized curve Y (X )» may be constructed by inserting a series of values of
X = log u and w into (25); this gives v immediately, and Y is obtained from (24 ):
Y =w + log ».

The projection map y(x), of the experimental data is then moved parallel
to the axes until the best fit with the normalized projection map Y (X), is
found, which gives p, and p,, and thus K,, and Kpq.

One may proceed similarily for any set of equilibria with only two equi-
librium constants, thus either free B and two complexes, or three complexes
and a negligible concentration of free B. With four species containing B, thus
three equilibrium constants, one may draw a series of projection maps, in each
of which the ratio between two equilibrium constants (or some other suitable
expression) is kept constant.

An advantage of the choice (14; 21, 22, 24) of log a and log B as planar coordi-

nates and Z or log —b§ as “height”’ in the experimental maps is that several

alternative explanations may be compared directly on the same plot of experi-
mental data.
Examples will be given in subsequent papers on hydrolysis equilibria.
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