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Some Graphical Methods for Determining Equilibrium
Constants II. On ’’Curve-fitting”® Methods for
Two-variable Data
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A survey is given of graphical methods for determining & number of
unknown constants (parameters) p;, p,... from a get of data y(x)
when the function y(x, p,, ps . . .) i8 known. If z, y, and p; may be so
chosen that one or two parameters can be connected with the variables
to form normalized variables” X = x + p,, ¥ = y + p,, the para-
meters may be found by fitting normalized curves. Such “curve-
fitting” is preferable to numerical or ’elimination’ methods (see
Table 1). For instance, with three parameters, y (2 ) may be fitted to
a family of curves Y (X, p,); p, and p, are obtained from the shifts of
the coordinate axes, and p,; from the shape of the curve. — A linear
plot is a special case of curve-fitting; linesr plots, however, have limi-
tations which often make curved plots preferable.

Some examples are given from the determination of one or two
complexity constants, and the determination of coefficients in simple
polynomials.

If there are more than 2— 3 parameters, ’sweeping’’ and successive
approximation may be used; the first procedure should not be used
without the second. The use of smoothed curves, instead of the
experimental points, requires great caution.

The determination of the equilibrium constants in a complicated system is
a special case of the problem of finding a set of unknown constants from a
series of experimental data. By choosing as many experimental points as one
has unknown parameters, one may obtain a set of equations and solve them
straight-forwardly <& %2 or by successive approximations 3?38, Graphical
- methods have the advantage over such numerical ones that the information
from a much greater number of data may be considered simultaneously.
The usual tendency among chemists who apply graphical methods seems to
be that of transforming the experimental data into a diagram of two variables
that should give a straight line. From the slope and intercept of the best
straight line, one may then determine two unknown constants. If there are
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GRAPHICAL METHODS II 187

more than two unknowns, they may be obtained by a series of successive linear
extrapolations, which is a special case of sweeping” below.

In previous papers by Dyrssen4 and Sillén 4% a somewhat different
method has been applied to some special cases, namely fitting a diagram of
the experimental data to a family of calculated curves. The shape and posi-
tion of the curve with the best fit then gives the required information. —
In the work on equilibria with polynuclear complexes to be published, various
“eurve-fitting”’ methods have proved useful. It has then seemed timely to
classify what such methods may achieve.

The present paper will first give a rather general survey of graphical ways
of determining one, two, or three unknown parameters from a given collection
of experimental data y(x). The application of methods of curve-fitting will
then be shown for a number of special cases. A linear plot is only a special
case of curve-fitting; it will be argued that the straight line is sometimes,
but not always, the best curve.

The way of treatment given below may be common usage in some other
- branches of pure or applied science. However, it does not seem to be well
known to all chemists.

SYMBOLS

concentration of free A (6)
concentration of free B (6)
experimentally determined function in (21) and following
equilibrium constant (6)
K,, K, stepwise formation constants of complexes (text above eq. 12)
ko, %y, k; unknown coefficients in (21) and following .
Py, Py, P; unknown constants (parameters) to be determined
auxiliary variable (7, 12a, 23, 27a, 28a)
X, Y normalized values for x and y (2, 3)

e

xz, ¥y variables determined experimentally

%y Yo values for # and y coinciding with X =0, ¥ = 0 at best fit
(2b, 3a)

V/ average number of A bound per B (7, 12)

complexity products (12)
Subscnpt), indicates that z is constant

THE PROBLEM

Table 1 gives a schematic survey of possible ways-of treating a collection of
experimental data (z, y) in order to determine one or more unknown constants
(parameters) p,, P, . . . . If the experimental ’points’ are sets of two variables
(%, y), they may be plotted in a planar diagram y(x). — The case of three
experimental variables (z, ¥, w), which cannot be reduced to a two-dimensional
form, will be treated in a following paper.

We shall assume that x and y can be calculated directly from the experi-
mental data, although they may not be the quantities actually measured. Nor
need p;, P, . . . be the equilibrium constants etc. ultimately sought for, although
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Table 1. Methods ior finding unlmown constants p; from experimental data y(x)

‘Number -of . ﬁmre (@, y) | Eliminate Two-dimensional
parameters | normalized gra. with cal-| y to give projection
_ variables lated graph graph -
1 (p,) ‘ { Yz) X,y Curve y(X) and plot y(x) '
0 2,p, Plot py(x) ‘ ‘
2(,y) X,y |Curve ¥(X) and plot y(x)
;o 1(x) . X,Y,p2 a) Fa.mxly of curves y(X)p,. and
2(p1ps) , y(x) plot
_ b) py(X), and pI'O] strip’ (x),,
0 Z,01,Pa a) Horizontal line in faml-ly :
‘ Pa()p,
b) Ir:tersectlon of curves
P2(Py)x ‘
2 () | X,Y,ps Family of curves Y(X)p,
1(22) X’?/rphpa . -
3(?1’1’:,}7:) .
‘0 TyP1sP2sPs - |

one must-.,be’able to calculate the latter, once the p, are known. — In fact, it
may often require a fair amount of trial to devise the most suitable functions
z and y of the primary data, and the most suitable parameters p;.

For each special problem we know the mathematical relatlonshlp between
y, z, and the p,, e. g. in the form ;

Y = y(=, pl)
Yy =y, p1, P2)
or y =y Py, Py Ps)

We shall define our primary problem as finding the best poss1ble values for
tlil'e p,, assuming that the function (1) is correct; and not as testing the validity
of (1).

Table 1 shows two main ways of treating the problem graphically: eliminat-
ing one variable (say ), or comparing a plot of y (z ) with a calculated norma-
lized graph”.

We shall not disciiss graphical methods like that of Scatchard 7 in which
the intercepts and slopes of two limiting tangents of a curve give approximate
values for four parameters which are, however, then refined numerically. This
method does not seem easily adaptable for graphlcal refmement of the con-
stants.

)

Eliminating y

v One parameter. When the values (z, y) for the expenmental points are
inserted. into y(xz, p,), each point gives a value for p,. If p, is now plotted
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constant py;= ’ . -constant x=
> e » X5
(b) .
P2 ' %
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%
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Fig. 1. Finding two parameters from y(x) data by elimination: a ) ps(x)s, curves: horizon-
tal line for correct value of py; b) pa(p1)x curves: intersection at required point pe,py.

against z, one would expect to find the points scattered randomly around a
horizontal line, since p, is really a constant. Usually no plot is made but the
average value for p, is calculated numerically. The diagram p,(x) is drawn
only if one wants to test for a trend in p, (which would show that the equation
y(x, p,) in (1) is not quite correct), or to illustrate the spread in p,.

Two parameters. The insertion of a pair of experimental values (z, y) into
y(x, py, Po) gives a functional relationship between p, and p,, which may be
thought of as a planar curve p,(p,), in (x, p,, p,) space. (The subscript ”,”
indicates that x is kept constant.) A number of these curves would give a three-
dimensional surface p,(p,, ). Since p, and p, are constants by definition, the
correct set (p;, p,) must be possible for all values of x, and thus corresponds to
a straight line which is parallel to the x axis and lies entirely on the surface
Da(Dy, ).

This set may be found in two ways:

a) One may plot p,(x),, , testing various constant values for p,, until one
finds the value for p; that makes p,(x) a horizontal line (Fig. 1a).

b) One may also plot py(p,),, each experimental point giving rise to one
curve, and find the required set (p,, p,) at the common point of intersection
of these curves (Fig. 1b). An example of the second method is given in (20)
below (Schwarzenbach 8). It is in general more expedient if one wants accurate
values for p, and p,; however, the first method may have advantages if one
wants to test for systematic errors in certain parts of the range of «.

Three parameters. Each experimental point y(x), when combined with
Y (%, 1, Py, Ps) in (1), gives rise to a surface p,(pe, ps) in (py, P, Ps) sPace;
this surface may be thought of as a section at constant z of a four-dimensional
super-surface p,(p,, P;, ).
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The set (p,, Py, P3) sought for is the common point of intersection of all
these surfaces p,(py, P;),. If one of the parameters, say p,, may be estimated
rather accurately, so that only two or three values of p; need be considered,
one might construct & plot p,(p,)s,», for each of these values of p;. By studying
the range where these curves intersect in each section, one may docate the
point of intersection of the surfaces p,(ps, Ps).-

However, in general it seems impractical to vary more than two para-
meters simultaneously using the elimination procedure. One would then rather
resort to successive approximation (see below).

Normalized graphs

The calculations are much simplified if one may normalize one variable
or both.

One parameter. Suppose, for instance, that by suitable choice of variables
and parameter we may arrange that the funetion y(z, p,) contains as the only
variable the sum of x and p,

X=z+4p (2)
The function, which we may thus write
y = y(X) (2a)

(X = “normalized 2’’), may then be plotted as a graph (cf. Fig. 2a), and moved
along the z axis of the experimental diagram y(x) (cf Fig. 2b) until the best fit
is obtained (cf. Fig. 2¢). In this position one reads the z value, #,, correspond-
ing to X =0, and finds
X=02=2=—p (2b)
as required by (2).
In this laboratory, such curve-fitting is generally made by superimposing the experi-

mental and calculated diagrams, drawn on an ample scale, on a table of opalescent glass,
50 ecm X 60 cm, illuminated from below. ;

Two parameters. If it is possible to normalize both variables
X=a+p; Y=y+p (3)

the function y = y(x, p,, p,) is reduced to the form Y = Y(X). The curve
Y(X) is calculated, and moved on top of the experimental data — this time
allowing parallel movement along both coordinate axes — until the best fit is
obtained. The coordinates of the point (x,, y,) coinciding with the origin of the
normalized graph (X = 0, ¥ = 0) are read

(X=0,Y=0s2=0=—p; Y=Y =—17P; (3a)

This procedure provides a great simplification compared with the “’elimina-
tion”’ procedure above.

Even if one does not find a suitable way of normalizing two variables, the
gain of normalizing one is also considerable. In this case we have a normalized

function |
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1
—~
e

[ by

x=loga

2 X=xtlogk

‘x=loga

Fig. 2. Single complex: a ) calculated curve y(X), eq (8a ) and (8b); b) imaginary experi-
mental data y(x), eq (8); c¢) best fit of a and b; d, e ) effect of systematic analytical errors:
d) constant error in assumed amount of A, e) constant error in assumed ratio of A to B.

to which the data y(x) may be fitted. We may imagine y(X, p,) as a three-
dimensional surface, to which the plane curve y{(x) may be fitted by shifts along
the X and p, axes. One might consider working with a three-dimensional
model, but two-dimensional plots are more easily handled and represented in
print. Two approaches have been attempted:

a) In some earlier papers (Sillén ¢, Hietanen and Sillén®, Rossotti and
Rossotiti 19, using the two-parameter’’ approximation ¢) a family of curves
y(X),, was compared with the experimental diagram y(x). Then p, was obtai-
ned from the parameter of the curve that gave the best fit, and — p, from z,
at the best position. For improving an approximate value of p, one may either
draw curves for intermediate values of p,, or use some characteristic measure
of the curve, such as the horizontal distance z(y,)—(y,) between two fixed
values of y, or the slope dy/dz at a certain value of y.

b) A subsequent paper by Rossotti, Rossotti, and Sillén 1! will show the
advantages of constructing curves p,(X), for a series of round values of ¥,
and comparing them with a projection strip (), of the experimental data.

Three parameters, finally, may in principle be determined by fitting y(x)
to a three-dimensional surface Y (X, p,;), provided that both x and y can be
normalized. Conveniently, y(z) is compared with a family of normalized
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curves Y(X),,: p, and p, are found from the shifts along the coordinate axes
(thus from z, and y,), and p,; from the shape of the curve. Examples are given
in a paper by Dyrssen and Sillén 4, and more will be given below.

If only one variable can be normalized, we have to fit y(z) to a four-dimen-
sional super-surface y(X, p,, p,). This problem may be transformed to two-
dimensional diagrams, e. g. by some method of successive approximation.

Linear plots are a special case of a family of normalized curves. If the two
functions y and x are devised so as to give a linear plot, say

Y = Px + PPy = P X (5)

the construction of the best line through the data y(x) may be considered as the
fitting of y(x) to a family of curves y(X),,, which are in this special case a
bundle of straight lines y = p,X. In practice they are generally not constructed
since a templet (i.e. a ruler) for these curves is always available.

Fitting a straight line of a given slope to the y(z) is a special case of fitting
a single normalized curve y(X). ‘

In the following sections it will be shown by means of a few simple ex-
amples that the use of a suitably chosen set of non-linear normalized curves
may have advantages compared with a linear plot. Finally some methods will
be discussed — successive approximation, “sweeping’’ — which are resorted
to when the number of parameters is so great that a single two-dimensional
diagram will not suffice.

APPLICATIONS TO SIMPLE CASES OF COMPLEX FORMATION
Z (log a) data for single complex

If two reagents, A and B, form the single complex AB, the only constant
to be determined is the equilibrium constant K

A + B & AB; [AB] = [A] [B] K = abK (6)

(If, for instance, A = H+, B = Ac¢", and AB = HAec, then K = K . for
HAc.) Let us assume that the concentration a of free A is measured for a
series of solutions. For each solution the analytical data, together with a,
give us Z, the number of A bound per B. The relationship is

[AB] oK v

Z:[B]+[AB]:l+aK= 1+ v M

- Data Z(a) are often used for determining complexity constants and acidity con-
stants. As seen from (7), Z is a function of the single variable v = aK. Choos-
- ing our experimental variables, and the single parameter as

x=Ilog a; y=2Z; py=1log K (8)

we may use a normalized variable (2)
X =1log v=1log a + log K (8a)
Acta Chem. Scand. 10 (1956) No. 2
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The normalized curve y(X), which may easily be constructed, is obtained from
(7’ 8, 88‘): v 10X
y(X) = =
14w 14 10X
This calculated curve y(X), Fig. 2a, is moved parallel with a plot of the

experimental data y(x), Fig. 2b, until the best fit is obtained, Fig. 2¢c. Then
one may read, from the value of z coinciding with X = 0

(8b)

#y=—mp =—log K (8¢)

Calculated curves of the shape (8b) have been used in several laboratories;
e. g. Simms 1> mentions the use of a paper mould of this shape for finding
acidity constants.

Comparison with alternative methods. One may find K from the same data
Z(log a) by normalized graphs, using the same x and X (8, 8a), but choosing y
80 as to obtain a linear plot13

z=1log a; X =log a + log K }

y=1log ——— =logaK =X (9)

1—2Z

Plotting y = log Z/(1 — Z) versus = log a, one would thus get a straight
line of slope 1, which may be fitted to a normalized curve y = X. At X =0

one reads z, = — p, = — log K as in (8c).
One might also use the elimination method, calculating
K = Za(1 — Zy1 (10)

from each experimental point, and taking the average.

In comparison with these methods, the choice of variables in (8) has some
real advantages. The variables log @ and Z are so close to the data primarily
measured that one may mark out in the diagram how much an experimental
point y(x) would be changed by a certain experimental error — say by 0.3 mV
in the emf in measuring a, or by 0.5 %, in the analysis of A or B. So one may
judge whether the deviations from the normalized curve are reasonable in
view of the expected experimental accuracy.

Further, systematic analytical errors are easily recognized and corrected
for since they give rise to a parallel shift along the y axis (Fig. 2d), or to a small
change of scale along the y axis (Fig. 2e). With (9) or (10) such errors would
give a trend in K but it would not be as easy to see the cause immediately.
Treatment with the least square method, as usual, would do no good in the
presence of systematic errors.

If it is found necessary to correct for small analytical errors of both kinds,
one may connect these errors in Z with two parameters, one p, involving a
shift along the y axis, and another p, a shift in the y scale. With

x=1log a; y=2; p, =1log K (8)
X=x+p =log v; ¥ =y+ p=po(l + o) (11)

we have a system with two normalized variables and three parameters, which
may be solved by means of a set of ¥ (X ),, curves. The two other methods are
not so easily adapted to correcting for analytical errors.
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Z(log a) data for two complexes

If the reactants A and B form two complexes, AB and A,B, with the over-
all formation constants (’complexity products) f;, = K, and g, = K, K,
(K, and K, stepwise formation constants), we have

[AB] = p,ab; [A;B] = fya®b

7 _ [ABI+2[AB] _ Ba+2pe (12)
[B] -+ [AB] + [A,B] ~ 1+pa+ pya?

Setting as before (cf. 8, 8a)
x=loga,y=2; X =2+ p, =log v (12a)

we may normalize log @, leaving one parameter in the expression for y. Two
possible ways are, expressing for convenience the relationship (X, p,) by
means of the auxiliary variable v in (12a)

. o a8, v+ 2 pt
nm=lgh ip=0h s y=T, 75 (13)
- - 2
Py =% logf, =% log K\K,; py=pBfit = (KK ) y = fz-:?_rv-i-?v’ (14)

Fig. 3 shows a family of curves y(X),, caloulated using the second approach
(14). They may be regarded as sections of the three-dimensional surface
y(X, py). — The properties of functions like (12) have been discussed by Auer-
bach and Smolezyk 4. A family of curves like Fig. 3 was given by J. Bjer-
rum %26, Neither seems to have used them for curve-fitting. J. Bjerrum’s
average constant is 10, and his spreading factor is 3 p,, in (14).

To find the required parameters, the experimental data y(x) should be
moved along the p, and X axes until the best fit is found. By comparison with
the family of curves y(X),,, Fig. 3, one may first test for, and if necessary cor-
rect for, systematic analytical errors, like in Figs. 2d and e. Then p, can be
estimated from the two curves giving the nearest fit; a better value may be
found by inserting curves for intermediate values of p,, or by using some suit-
able measure (say, the difference between X(y = 1.5) and X(y = 0.5), cf.
Irving and Rossotti!). The other parameter is found from the values of z,
corresponding to X = 0.

For determining the parameters accurately, the method described by Ros-
sotti, Rossotti and Sillén ! is advantageous: a projection strip (x), of the
experimental data is moved parallel with the X and p, axes to give the best
fit with the family of curves p,(X),.

Alternative methods
Linear plot. We may transform (12) to the form

Z + pa(Z — 1) + Ba*(Z—2) = 0 (15)
Acta Chem. Scand. 10 (1956) No. 2
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pyv +2v?

1+pyv +v2

X =log v

Fig. 3. Two complexes: calculated curves }fr( X )p, (eq (12a ) and (14 ) for various values
of Pa.

Dividing by suitable factors and rearranging, this equation may be reduced to
the linear form, with X normalized

Y = P + PPy = P X (6)

by any of six transformations, three of which are given here (in the other |
three,  and y are only interchanged)

a?(2—2Z)Z! = Bfa ‘a(Z—1)Z71 + B2t (16)
Za Y (Z—1)7 = Bya(2—2Z) (Z—1)'—p, (17
Za~2(2—2Z)t = — pa”H(Z—1) 2—2Z)7' + B, (18)
For instance, with (16) we have :
y=0aQ2—2)Z7 ; x=a(Z—1)Z7 ; py =P ; py=Pfi (16a)

Equation (16) is essentially identical with that given by Speakman 5 and
(17) with that of Irving and Rossotti?, 1, also used by Rossotti and Rossotti 9.

The method given by Schwa.rzenbach Willi, and Bach 8 may be classified
as an elimination method, using the parameters

P=F" = Babi (19)
and dividing (17) by B, to obtain
' Z a(2 — Z)

Pz =1y P ——1 ! (20)

Each experimental point (Z, a) gives a straight line (20) in a plot (pl, p,)
which is conveniently constructed from the intercepts — a(Z — 1)Z
(Z— 1)a* (2—Z)1. All these lines should intersect at the point (p, pz)
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which gives the correct set (8,, 8;) by means of (19). (For a dibasic acid H,X,
as discussed in Ref8, with A = H* and B = X 2-, the acid dissociation con-
stants are related to the formation products by K,; = #,6: and K,, = fi ).

Linear versus curved plots. The search for the best straight line (5) is a
special case of curve-fitting. The advantage of a linear plot is the simplicity of
construction. However, considering the time that will usually be spent in
getting accurate data, the little extra work of constructing a set of normalized
curves is mnegligible.

There are several limitations to the linear plots, which may often make it
worthwhile to try a curved plot.

1) The connection between the functions used and the experimental data
will often be so remote in a linear plot that it may be hard to decide whether a
certain deviation is compatible with the experimental accuracy. With curved
plots one has a greater freedom to choose variables more directly connected
with the experimental data. Compare, for instance, the variables ¥y = Z and
x = log a in the curved plots (Figs. 2 and 3) with the complicated functions
of Z and a used in the linear plots (eqns. 16, 17, 18).

2) Systematic errors may make a linear plot deviate from linearity; how-
ever, such deviations are not always readily explained and corrected for. A
curved plot may be devised so that systematic errors to be expected (say,
analytical errors) are easily recognized and corrected for. The systematic
error may be treated as one or two extra parameters to be determined, as in
(11).

3) In studies of chemical equilibria, the concentrations of the reacting
species are often.varied by several powers of ten — and should be so varied,
wherever possible. Then the scale of a linear plot may become awkward: the
experimental points being scarce at one end and compressed at the other. A
small experimental error may cause much greater deviations in some parts
than in others. In estimating the best line, it is difficult to weigh deviations in
different parts of the diagram against each other, especially if the variables
plotted, ¥ and «, are also rather remote from the measured quantities.

With curved plots this difficulty is overcome by using a logarithmic con-
centration scale, which is also very convenient for normalization. Especially
with emf measurements, the accuracy at different parts of a logarithmic scale
is approximately the same, and this facilitates the estimation of the best
curve.

4) A single linear plot can give only two parameters, whereas a curved plot
will allow the simultaneous determination of three parameters.

5) Sometimes one may want to use the data for choosing between different
hypotheses, each of which gives a different expression (1) for y. If one insists
upon linear plots, the various hypotheses will in general give very different
variables, and so it is hard to make a good comparison between them. Using
curved plots, one has a greater freedom of choice. It is often possible to use a
plot of the same variables to fest for several different hypotheses, e.g. in ref 8,9,
where mechanisms with a single polynuclear complex, with series of “’core -+
links” polynuclear complexes, and with the formation of a precipitate, could be
tested on the same plot y(x); in this case, y = Z/t, x = tlog a + log B. Thus
it is easier to judge which deviations are really to be considered as essential.
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The scale should of course be so chosen that full advantage is made of the
experimental accuracy. Thus, for a rather accurate set of data it may prove
desirable to use a plot on a much larger scale than would seem necessary for
another set of data, otherwise using a plot with the same normalized functions.

DETERMINING THE COEFFICIENTS IN POLYNOMIALS

Suppose that we have measured, over a certain range of the variable @,
a number of experimental points (@, f), where f is related to @ by

f@) = ky + kya + kya? ’ (21)

ko, k, and k, being unknown constants to be determined.

For instance, in studies of systems with complexes A,B, a may be the
concentration of free A, and —59.16 log f may be the change in the emf of a
B electrode; or a?f! may be the distribution ratio of B t.ta1 between an organic
solvent and an aqueous solution of A.

Problems of this kind may be solved by using normalized curves. Setting
as experimental variables

x =log a; y =log | (22)
we may use the following normalization

X=z+4p =log v } (23)
Y =y + pp = log(1 + pyv + 0%

Solving p;, p,, and p; from (21), (22), and (23) we find

—xy=p; = § log ky — % log k,
— Yo = Py = —log k, } (23a)

log py =log k, — % log ky— % log k,

Fig. 4a gives a family of curves Y(X),, calculated from (23). The curves
have two common asymptotes, ¥ = 0 and ¥ = 2 X. If a given set of experi-
mental data y(x), eqn. (22), is moved so as to give the best fit (Fig. 4b), the
shape of the curve gives p;, and the coordinates (z,, ¥,) coinciding with (X = 0,
Y = 0) give —p, and —p,.

To refine the value of p; one may interpolate in some way between the
calculated curves, possibly inserting new curves with intermediate values of
p;. If the accuracy admits it, one may use the vertical distance y—, from the
experimental curve to (x,, ¥,); at this point X = 0, and (23) gives

for X=0,v=1 Y =y—y,=1log(2 + p;) (23b)
The required constants are calculated using (23a)

log ky =— 1,
log &y = p, — p, + log 13 } (23¢)
log k, = 2p, — p,
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Fig. 4a. Family of curves (23), X =log v, Y = log (1 + psv + v2) for finding coeffi-
ctents of polynomials ko + k,a + k,a®.
b. Fit of experimental daia.
c. Fitting inverted curve, X = — log v, Y = — log(1 + psv + v?), eq (26 ), to data
x=1log &, y=1log f =—log(ky + kya™* + kea™?).

It should be noted that the same set of curves may be used also to find
the coefficients of functions of the types

@) = by + bt + kot (24)
fl@) = (ky + ko + kya®)? (25)
fa) = (ky + kya™ + kya™®)™? (26)

One needs only reverse the signs of the X axis for (24), of the Y axis for
(25), or of both for (26). For (26) we have for instance (Fig. 4¢) X = —log v,
Y = —log(1 + pgv + o?).

In practice, the reversal is simply made by rotating the paper, on which the curves
have been drawn, by 180° around a vertical or horizontal axis.
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Separate curves should be drawn for the values 4, = 0 and %k, = 0 which
appear only as limiting cases in the treatment by means of (23). With k; = 0
we have

fla) =ky + ka ‘ (27)
We may use the same coordinates
z=log a; y =log | (22)
and normalize, using the auxiliary variable v
X=z+p =log v; Y =y + p, =log(l 4 v) (27a)
Solving p, and p, from (22), (27), and (27a) we find
P, = log ky —log ky; p, = —log ky (27b)
With ky = 0 we have correspondingly
f(@) = kya + kya? (28)
Using the same set of experimental variables (22), and normalizing
X=x+4p =logv; Y=y+ p,=1log v+ (28a)
we would find
P, = log ky—log ky; p, =log ky, — 2 log ky (28b)

The curves (27a) and (28a) are shown in Fig. 5; they can of course, like those
in Fig. 4a, be applied to functions with inverted values of f or @, just by revers-
ing one coordinate axis or both.

Ya=log(lev) Y=logl!

Yz=log (v+v2)

N
N
2F ’\og ',\0%

17 A

Fig. 6. Normalized curves (27a) and (28a) for finding coefficients in f = ko + k,8
and f = k,a + ksl
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Y
3 I
Y=log (v +pyev)
y=log v Y=log v
2r py= 50
]
1t :
~—2 —
Yr/og(l’v{ 0 ‘ 'Y=Iog tvlan
0 N \ po Yo e ! |
-3 -2 -1 0 1 2 3
X=log v

Fig. 6. Normalized curves (29 ) for finding coefficients of polynomial ke + k,a + k,a%=f,
by comparison with log fa™ (log a ) diagrams. Curves are also drawn for cases with one or
two coefficients = 0.

Using the double-logarithmic plot (22), all three unknowns in f =k, +
kya + k,a® may be found by comparing with the curves in Figs. 4a and 5. —
It may seem surprising that a curve-fitting method is advocated for problems
which have usually been solved by linear plots, and would seem admirably
suited to such. However, with experimental data extending over a number of
powers of 10, a logarithmic plot may give a better estimate of the real accuracy
(see above, p. 196).

The same approach may be used for any polynomial with only three para-
meters, say f(a) = ke + kya® + k,a* etc. It may prove useful in some cases
to use as y, not log f but for instance log fa™ or log fa?. Thus the polynomial
(24) may also be treated by considering y = log fa? = log (k, + ka + k,a?),
which may be treated with the curves (23).

Even the polynomial (21) f = k, 4 k,a + kya 2 may sometimes preferably
be treated using (Fig. 6)

z = log a; X log v (29)
y = log fa™; log(vl+p3+v)

Equations (23 a, b, ¢) still hold. Thus p, is found from the intersection of the
Y axis for X =0: Y = log(2 + ps).

SMOOTHED CURVES

It seems a good rule to select such graphical methods as allow one to retain
a good feeling for the possible effect of experimental errors. Thus one would
like to plot each experimental point as a separate point, with such coordinates
that the influence of an experimental error can be readily estimated. In stu-
dies of complexity equilibria, this principle has been especially strongly advo-
cated by Ledene & 18,

Thus, it does not seem advisable to draw.from the onset a smoothed curve
through a set of data, and then to keep strictly to that curve. This approach is
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especially dangerous if the data have only intermediate accuracy, and the
points are rather scarce in some part of the diagram. On' scrutinizing such
?smoothed curves’ one may find that the position of certain points will unduly
influence the way of drawing the curve. If it so happens that from a certain
”’smoothed curve’’ one has calculated values for the unknown constants that
give a fair agreement with the original smoothed curve, one is too often inclined
to think that one has found the right set of parameters, without trying to
imagine how wide a domain in parameter space (p,, P, . . .) would also have
given an acceptable agreement. Only if a smoothed curve gives constants that
fail to reproduce it, it is emphasised that the curve must be incorrectly drawn,
i. e. that it does not belong to the right family of curves.

Sometimes it may be unavoidable to use a smoothed curve, especially when.
a differentiation or integration is necessary. To avoid the dangers of smoothing
the wrong way, one should use the following precautions:

1) Besides the best ’smoothed curve’’ one should also draw two or more
curves that deviate from it but would still give an acceptable agreement with
the data. A comparison with constants calculated from these curves will give:
an indication of the real accuracy.

2) The results obtained with a smoothed curve should be compared with
those obtained by other, independent methods.

METHODS FOR SEVERAL PARAMETERS

Successive approximation

The experimental range may often be divided into several parts so that
one or two parameters, which give the main effect in one part of the range,
give only a small correction in the other. Suppose for instance that we have an
experimental quantity y(z, p,, ps, Ps, P4), and that p, and p, predominate in
one range of # whilst p; and p, give a small correction, whereas in another range
it is the other way round. Then p, and p, may be determined from the first.
range by one of the methods for a two-parameter problem, using approximate
values for p, and p, or even neglecting them; then p, and p, are determined by
some two-parameter method in the other range, assuming the first approximate:
values for p, and p,. Using these values for p, and p, in the first range, better
approximations for p, and p, are found etc.

In this way four or more parameters may be obtained by successive
approximation using two-parameter methods. This procedure is not neces-
sarily unsatisfactory, since one need never lose the contact with the experi-
mental data.

"Sweeping” methods

Especially for the determination of consecutive constants of complex
formation, another type of method has been used, which may be described as
"sweeping’’ for the parameters. The term will indicate that, just like with
a sweeping search-light, the interest is centered on one or two constants at a
time, and that the centre of interest is moved along the series of parameters.

The function y(z, p,, Py, Py, Py - - .) is first reduced to a two-parameter
problem by neglecting other parameters than p, and p,. In the range where
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P, and p, are predominant, a plot (usually linear) is made from which approxi-
mate values for p, and p, are found. The value for p, is accepted and inserted
into the function y. Now the function y (x, p,, Ps . . .)p, is considered, keeping
p, constant, neglecting p, and following parameters, and having p, and p,
as unknown parameters to be determined. This plot gives a value for p,,
which is then used in a new plot with p; and p, as unknown parameters. The
procedure may be speeded up if one accepts both values for p, and p, obtained
from the first plot, and thus gets two parameters from each plot. It is often
advantageous to use different experimental functions y and x in different parts
of the range.

With such a method there is a danger that errors in the values for the first
parameters p,, p, etc will accumulate, making the plots for p, and p; somewhat
unreliable; at any rate, the feeling of contact with the experimental data is
definitely lost, and it is very hard to estimate the real accuracy.

The parameters obtained may be checked and improved:

1) by sweeping the series of parameters from both ends; an example is given
in part 119, The deviations will give an indication of the accuracy.

2) by successive approximation. After a first approximate set of para-
meters has been obtained, the terms corresponding to the higher parameters
are inserted into the first plot for finding p, and p,, which gives better values
for these parameters. The process may be repeated, either always from one
end, or sweeping from alternate ends of the parameter series, depending on the
problem and type of data. As a rule, this simple precaution appears to have
been neglected previously.

If curved plots are also considered, one would have a greater freedom of
choice.
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