Steady State. Treatment of Kinetc Results Concerning the Catalatic Decomposition of Hydrogen Peroxide

J. A. CHRISTIANSEN

Universitetets fysisk-kemiske institut, Copenhagen, Denmark

To account for experimental results concerning the reaction in question a flow sheet is proposed which also implies an explanation of its retardation by azide ion. The essence is that azide acts as a competitive inhibitor by forming, reversibly, a stable complex with catalase containing one azide and at least one hydrogen peroxide.

It is known that at low hydrogen peroxide concentrations its catalatic decomposition up till nearly 100 % decomposition obeys the chronometric integral

$$kt = \ln h/x$$

where x is the concentration of hydrogen peroxide at time t, h the same at time zero and k the usual rate constant. The simplest reaction pattern which agrees with this result is

$$X_1 + H_2O_2 \Rightarrow X_2 \pm 1$$

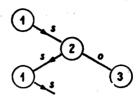
 $X_2 + H_2O_2 \Rightarrow 2H_2O + O_2 + X_1 = 2$

 X_1 may be either free catalase or catalase combined with one or several molecules of hydrogen-peroxide. Kinetics alone is unable to distinguish between these possibilities. X_2 obviously contains one molecule peroxide more than X_1 .

Assuming steady state the usual procedure yields

$$\begin{array}{l} x_1/s = 1/w_1(1+w_{-1}/w_2) \\ x_2/s = 1/w_2 \end{array}$$

If furthermore the enzyme is either in the state X_1 or in X_2 we have $x_1 + x_2 = E$, where E is the total concentration of enzyme.


Fig. 1. The diagram is a flow sheet showing the transitions

$$X_1 + H_2O_2 \rightarrow X_2$$

 $X_2 + H_2O_2 \rightarrow 2H_2O + O_2 + X_1$

and the equilibrium

$$X_2 + N_3 \rightleftharpoons X_3$$

The displacement of the two containers for X_1 indicates that there is a decrease in free energy by the overall reaction.

From the reaction pattern we conclude $w_1 = k_1 x$, $w_{-1} = k_{-1}$; $w_2 = k_2 x$, where x is the peroxide concentration. Insertion yields

$$-E\frac{\mathrm{d}t}{\mathrm{d}x} = (1 + k_{-1}/k_2 x)/k_1 x + 1/k_2 x = E/s$$

This agrees only with the experimentally determined chronometric integral for small concentrations of peroxide if, for all accessible values of x, $k_{-1}/k_2x \leqslant 1$ and we thus get for the rate constant $k: 1/k = 1_1/k_1 + 1/k_2$ which is in complete agreement with Beers and Sizer's ¹ results.

Mrs. Skovsted's results concerning retardation by azide can be adequately interpreted by means of the flow-sheet (Fig. 1). We get as before

$$(x_1 + x_2)/s = 1/w_1 + 1/w_2$$

But in this case $E=x_1+x_2+x_3$. x_3 is determined by the consideration that to preserve steady state the rate s_{23} must be zero, that is X_2 and X_3 are in equilibrium according to the chemical equation.

$$X_2 + A = X_3$$

which immediately yields $x_3 = Kax_2$. x_2 and x_3 are the concentrations of X_2 and X_3 respectively, while a is the concentration of azide. a may be considered as a constant if it is essentially larger than E. As $x_2/s = 1/w_2$ we thus get

$$(x_1 + x_2 + x_3)/s = E/s = 1/w_1 + (1 + Ka)/w_2$$

or

$$-x E \frac{\mathrm{d}t}{\mathrm{d}x} = 1/k_1 + (1 + Ka)/k_2 = 1/k'$$

where k'E = k is the experimentally determined rate-constant. The expression obviously agrees completely with Mrs. Skovsted's results. The slope of 1/k' against a yields the numerical value of K/k_2 . At present we have no means to determine k_1 and k_2 separately and it is therefore impossible to determine the numerical value of K. The result may also be written as follows

$$\begin{array}{l} 1/k = (1/k_1 + 1/k_2)/E + aK/k_2E \\ = (1/k_1 + 1/k_2)(1 + aKk_1/(k_1 + k_2))/E \end{array}$$

Mrs. Skovsted's results may be written

$$1/k = (1 + 1.08 \cdot 10^7 \ a)/0.0645 \cdot 2.303$$

Acta Chem. Scand. 9 (1955) No. 1

100

Comparison yields

 $1/k_1 + 1/k_2 = E/0.0645 \cdot 2.303$ where $E \sim 10^{-10}$ mole/liter

and

$$Kk_1/(k_1+k_2)=1.08\cdot 10^7$$
.

Assuming that k_1 is essentially larger than k_2 we get

$$k_2 = 2.303 \cdot 0.0645/E$$

and

$$K=1.08\cdot 10^7$$

The large value of K indicates that X_2 which is catalase combined with at least one molecule peroxide has a very strong affinity for azide-ion.

It may also have a strong affinity for peroxide or peroxide anion, but while the complex with azide-ion is stable, the peroxide complex obviously explodes immediately after its formation.

REFERENCES

1. Beers, R. F. and Sizer, J. W. J. Phys. Chem. 57 (1953) 290.

For other references see the preceding paper by Lis Skovsted.

Received October 22, 1954.