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The Formal Theory of Diffusion, and its Relation to Self-
diffusion, Sedimentation Equilibrium, and Viscosity
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Consequences of the eralization of the equation D = RT|®
for the problem of self-diffusion in mixtures are discussed. Inequality
relations are reported, showing that self-diffusion is slower than the
“‘corrected’ regular diffusion at the same composition of the solution.

. It is shown that the concept of an over-all mass-flow according to
the picture of Hartley and grank, does not bring about any modi-
fication in the generalized theory. It has been tried to apply the
simplest possible description compatible with the physical facts.

The use of Fick’s (lst) law is discussed. The formulation of the
general i-component case of the diffusion theory is discussed. It has
been avoided to use Fick’s laws, the deduction of which is instead
contained in the theory. ,

The complete support given by the thermodynamic sedimentation-
diffusion equilibrium, for the diffusion theory, is emphasized. The
interesting connection to the molecular concept and to the osmotic
theory is discussed.

Attention is directed towards the limitations, which séeem neces-
sarily connected with efforts to find a general relation between the
product Dy and the concentration for a binary mixture, if the magni-
tudes expressing the friction within each component, contained in the
formulae for self-diffusion in a mixture, are taken into account.

1. DIFFUSION AND SELF-DIFFUSION

In a previous paper !, the self-diffusion of a fluid system was treated using
the theory of the diffusion of a three component system. For the two
identical (labelled) components, the indices 1 and 2 are used. Seen as a whole
(1 + 2), this substance is denoted by the index 0. The self-diffusion proceeds
in the presence of a constant concentration of an additional component
3. For the self-diffusion coefficient D,, the following expression is obtained,
which is a mathematically exact consequence of the system of equations (11)
—(13) below. '

b _ RT R )
O Dy + Doty + Doy~ Dy + Do
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D;;, the molar friction, is the friction between the components i and j in
a volume containing one mole of component i. For the friction/cm?® we get
@y = nPigy = 0Py, n being concentration in moles/emd. As the two
molar frictions are not independent, we denote Pya) + DPgqy by D,,, omitting
the X-sign used in the previous paper.

Dy is the friction determining the (differential) diffusion of components
0 and 3 at the same concentrations n, and ng for which eq. (1) holds, accord-

ingto
RTByN;, _ RTBy__ RTBuN, @
Doz, ~ Py~ Pao

N is the mole fraction. B, is the symmetrical activity factor dln a/dln N.
Equation (1) refers to a system 0,3, in which component 0 is made up of
two identical components 1 and 2. With the same right we may, instead,
divide component 3 in two identical parts, and write the analogous equation
for Dy. Indices 4 and 5 being the ‘“labels” put on the two parts into which
component 3 is divided, gives for the self-diffusion of component 3

___ BT
Dy + D3y

It seems natural to consider the connection between diffusion in a concen-
tration gradient of the chemically different substances 0 and 3 (sometimes
called chemical diffusion) and the two self-diffusion processes, which proceed
simultaneously with the former process.

As the frictions are positive quantities, the equations show that Dyy/By,N
> D,, and Dgy/ByNy > D,. An example of this does the measurement of
Wang ? show, the corrected differential diffusion coefficient of glycine (XN,
< 1) being greater than the selfdiffusion coefficient of glycine at the same
concentration. —®,; of equation (3) rapidly approaches zero when Ny — 1
(if the molecules of component 3 seldom meet, the friction within the compo-
nent will become very small). Thus in infinitely dilute solution we must have
Dy = Dy,;, as also shown by Wang’s measurements. The fact that the self-
diffusion at finite concentrations is slower than the corresponding, corrected
ordinary diffusion, seems most natural to discuss in terms of the additional
friction @, in the former case, which may reach significant values already
at moderate concentrations for a substance of pronounced dipole character
like glycine. — Unpublished measurements in this Institute of C. L. Undeman
on the self-diffusion of water in electrolytic solutions fulfil the same inequality
relation. :

- Another inequality condition is Dy /By > DyD,/(Dy + D,). If one of
the components (3) is highly viscous and sufficiently concentrated, we expect
Dy > D,. In such a case we must have Dy,/By, > D, that is the (differential)
chemical diffusion, corrected thermodynamically, must be more rapid than the
selfdiffusion of the viscous component at the same composition of the mixture.

It is thus seen that a knowledge of the self-diffusions D, (eq. 1) and Dy
(eq. 3) does not give the ‘“‘chemical” coefficient Dy, (eq. 2). As a matter of
fact, the coefficients of self-diffusion are more complicated with respect to
friction since they depend upon the friction within the component 0 (or

.D03=

D, (3)
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3) as well as the friction b e t w e e n these components. This greater compli-
cation in the latter case is (independent of other conventions involved in our
formulae) a consequence of the self-diffusion being described as three-component
diffusion, whereas the chemical diffusion in question relates to a two-component
case.

An equation of the type (1) shows that self-diffusion may be ‘“‘slow” either
owing to a high friction between the identical molecules of component 0 or
owing to a high friction between this component and 3, or both.

At the same time, eq. (2) shows that ordinary diffusion of a two-component
system may be rapid, even if the correspgnding self-diffusion of the com-
ponents is comparatively slow.

Even if the expressions “slow’ and “rapid” of this qualitative description
are, from reasons of molecular physics, restricted within certain very narrow
limits, our formulae show that the two self-diffusion processes are not so
quantitatively related to the ordinary diffusion as one is inclined to believe.
Quite apart from the influence of the thermodynamic factor By, a quantitative
description of the latter phenomenon in terms merely of the self-diffusion
coefficients cannot be expected to be possible on an e x a ¢ t basis in a formal
sence, even though more or less empirical relations might serve practical
requirements.

Developing the molecular theory is, of course, very important. The formal
theory is based upon the conception that the free energy of the activity gra-
dient is consumed through friction b e t w e e n components but not within
these. This has to be carefully considered when confronting the formal and
the molecular aspects.

Regarding an experimental test of the equations, it has been shown (Ref.,

eq. (35)), that
_l_ — ”’ng QBOI!NS (4)
Dy, D§ Dy

where v} and DJ are the molar volume and self-diffusion of the pure compo-
nent 0. The formula supposes that the addition of component 3 does not alter
the specific frictional properties of component 0. Experiments are going on
to test this connection between the self-diffusion in the mixture (D,), in the
pure component (DJ), and the differential diffusion coefficient (D,g) for an
ideal mixture and, if this is successful, to study the interaction between the
components in cases of disagreement.
From reasons of symmetry we would also have

1 _ 8 Bul
D, D™ Dy
80 that Byy/Dys may be eliminated using eq. (5) and (4).

()

2. INTRINSIC DIFFUSION AND VOLUME-COMPENSATING FLOW

In the theory of Hartley and Crank 2 a distinction is made between ‘“‘pure
diffusion” and ‘real flow” as an expression for the natural tendency to look
upon the interdiffusion of two substances as an overlap of ‘two statistical
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spreading effects and a necessary volume correcting convection, which must
exist also if the mixing proceeds without specific contraction or expansion.
The volume transports, resulting from the random motion (and migration)
of the components, generally do not balance each other. The result is a volume-
correcting flow, which is entangled in and unceasingly accompanies the ““intrin-

ic” diffusion. An analogous picture is known in the kinetic theory of
gaseous diffusion.

For the present we are, in connection with this treatment of the diffusion
problem, mainly interested in the exact expressions of the authors mentioned,
before they introduce the ‘‘viscous resistances’ in a way which is of approximate
character. In the treatment of the mutual diffusion coefficient D4, Hartley
and Crank use Fick’s Ist law in accordance with the theory of the present
writer, in that it represents the flow relative to a volume-fixed reference frame..
In addition to the volume-fixed frame, they use a coordinate moving with the
above-mentioned ‘real flow”, so that the transports through a level, fixed in
this coordinate, result from ‘‘pure diffusion’ of the components. These trans-
ports are expressed by Fick’s law as —uv,DDny/dxr and —v, Dyang/dx for
the two components 0 and 3. £ is called the intrinsic diffusion coefficient.
We will proceed to show that this picture, however interesting in connection
‘with a physical molecular interpretation, gives the same general result
as our treatment, and thus is of no importance for the purpose, set by the
‘present author.

We refer to a previous article ¢ p. 1065. The linear velocities C of the
components are obtained from the volume transport just mentioned, dividing
the latter by the volume fractions nyv, and nyv, respectively. Thus

Cy—C,y = Qoaln g n Qsaln Ny (6)
and the condition for stationary movement becomes
dn N, dn n Jln n,
RTBggn, 7% e (Qo ¢ —D, 77 3)%3 (7

The “real flow” is supposed to proceed practically without friction. Equation
{44) of Hartley and Crank reads in symmetrical notation

D4y = ng¥y 00 + n303 05 (8)
Applying simple exchange of variables, the last two equations give
NgNg
Po3(ng + 1)

which is identical with equation (2) of the present paper. As the article of
Hartley and Crank is easily misunderstood in this respect, it is of interest to
state clearly that the special picture of intrinsic diffusion coefficients ) does
not introduce anything new regarding the exact generalization of the equation
D = RT/® to finite concentrations and non-ideal solutions.

-Doa = RTBos (9
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3. THE LAWS OF FICK AND RELATED QUESTIONS

The generalization of Fick’s laws to more than two components is obviously
of interest, although no special difficulties are met with, as shown by the
example for three components 5. The treatment given by Onsager and Fuoss
in a famous paper ¢ is concerned with dilute solutions, as stated on p. 2759
of that paper. Onsager, in another paper ? treats the generalizations of Fick’s
laws in a way which may be subjected to some detailed remarks. The intro-
ductory statement for two components, where ‘“the relative motion of the two
components’ is described as the flow J; = Dv#n, (i = 1,2), may need a com-
ment. D,y being the symmetrical coefficient, we may define unsymmetrical
ocoefficients according to

Dyy=D,Y,= D,Y, (10)

where Y = nv is the volume fraction, and write J;, = — D,Vn;, now describ-
ing the relative motion of the components. In order to show that this is true,
consider the linear velocities C;, = — D,vln n,. We expect C; = — C,,
which easily follows from eq. (10) and 9,d»n, + v,dn, = 0. — Using the sym-
metrical coefficient D,,, the equation J;, = — D,,Vn, expresses the flow
relative to the local frame characterized by X 9, J; = 0, originally proposed
in the same paper of Onsager and Fuoss, but not used there consistently owing
to the unsymmetrical character of the system, water and dilute electrolyte.
Also their expression for t e mobility of a component, although written
under the heading of ‘“‘the general equations for diffusion”, is restricted to a
'dilute solution (cf. Ref.). A more general expression is, in our notation,
1/®ys of equation (2).

- As already discussed by Hartley and Crank 3, not all experimental methods
give the symmetrical coefficient D (D, of equations (2) and (9)). The latter is,
however, most commonly measured (especially when the theory of the experi-
mental method is based upon the Fick-Wiener expression on/dt = d (Don/dx)/dzx),

" and should naturally be accepted as a standard value for tabulation purposes.
Similar considerations hold also for mo bilit y as calculated from diffusion
data.

In order to arrive at a simple formulation of the diffusion theory for the
case of i components arbitrarily mixed with one another, let K; be the force,
originating from the chemical potential field, which acts on the amount of
component i which is contained in one ¢m3 of the solution at a certain level of
the diffusion coordinate x. The movements resulting from these forces are
the linear component velocities C, cm/sec. The movements are stationary
owing to the high mutual frictional resistances, denoted by ¢; = ¢;. The
latter are, as the forces, expressed per cm?® of the mixture. We oé in for the
forces * .

ot
Ki=-—m 5‘,;; 2K =0 (11)
* If electrolytes are concerned (Onsager and Fuoss p. 2691), the chemical potential 4 includes

the electrochemical potential, and the electrical potential comes in as & new variable,
whereas the (analytical) electroneutrality condition gives an additional relation.
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The latter equation is equivalent to the well-known Gibbs-Duhem’s relation.
The condition for stationary movement provides

K, = 2;(01_01)%1 ' (12)
A conventional reference frame for the velocities is defined by

At constant partial volumes, 2’ is constant and, for convenience, put equal to
zero. This case is believed to be of quite dominating interest from the point
of view of principles, so that we do not here give the integral equation which
is necessary in order to settle the value of ' in terms of a bulk volume
change *. Eliminating K;, we have altogether the i independent equations
which are necessary to determine the velocities C; or the flows Cpn,. Each of
the resulting expressions for the flows represents a generalized Fick’s first law.
The corresponding ‘‘second law” (Fick-Wiener) is obtained by inserting the
value of C, into the equation for parallel flow
an 2

t being the diffusion time. — In this presentation, the mathematical solution
contains concentrations, chemical potentials (or activities), frictions/cm3,
z and ¢. The introduction of ‘“diffusion coefficients” is a matter of convention,
and seems to be practical only in the two-component case. This is evident for
three components? which is described by the frictions @;5, @a3, Ps1,
and two independent thermodynamic factors. To describe a system of more
than two components in terms of diffusion coefficients as proposed by Onsager &
is certainly an unnecessary complication. A detailed discussion of Onsager’s
equations is outside the scope and competence of this article. However, in
view of earlier calculations?, it is concluded that a mixture of identical
components may always be characterized by a diffusion coefficient; which for
the special case of three components can be written

Dypy = RTnnyw/@ 3 = RTngngv/@e = RTngn,v/ps = const. (15)
or in molar frictions
Dlz‘.i = RT(nl -+ n,)'v/ 4512 = etc.; ¢12 == ¢1(2) -+ @2(1) (16)

v is the molar volume of the substance.

Regarding the several component diffusion it is desirable to take stand-
point here to the formal side of the approach made by Onsager, Ref. 7,
p. 242, from which we quote

J, = 2 Dy grad my (17)
and k=1 .
-_ gradpi =2 RudJx (18)
k=1

* This procedure is essentially different for liquids (constant pressure) and for gases (constant
volume). .

Acta Chem. Scand. 8 (1954) No. 7



1126 OLE LAMM

The work of Onsager and Fuoss contains the analogous equation
. .
Ji = -—ké'lgk grad Uk (19)

The equations (17) and (19) express the flows J as linear functions of the gra-
dients of concentration n or of the chemical potentials u. 2, R, and D are
coefficients, of which £/n has the dimension of mobility, Rn of molar
friction, and D of diffusion coefficient. In the last equation i is the number
of solute species, butin equations (17) and (18) i is the total number of
components as in our equations (11)—(14) above. The analogy between (17)
and (19) (to be observed also between (18) and (12)), suggests however to look
also upon equation (19) as a general expression for i components, although
the coefficients £ are undertermined without an additional condition for the
flows. We will discuss the symmetry relation Ry = Ry;. Calculations were
made with i = 3, but there is no reason to question a general validity of the
conclusions. The calculations, using equations (11) and (12) without assuming
@i = @;i, have shown that Ry = Ry is equivalent to the assumption ¢; = ¢;;. *

e latter condition is, however, self-evident from physical reasons. — Further
the calculations show that the flows J are obtained from (12) in the indefinite
form 0/0, when considering that the sum of the forces/cm? is zero, (11), and
that @; = @;. — The coefficients Dy are easy to calculate and to express in
terms of ¢, concentrations, and thermodynamic factors. Dy proves to be of
no special simplicity. — Finally it is seen that the condition (11) regarding the
sum of the forces/cm® makes it possible to express the flows, equation (19),
by equations in which one of the forces has been eliminated. From symmetry
reasons the choice 2, = 0 is obvious.

The equations (11)—(14) are simple to use and to survey, and seem to con-
tain what can be expected of a generalization of the formal theory of ordinary
diffusion, from the classical two component and dilute case, to a general
(mechanically normal) fluid mixture. The supposed difficulty 7 of obtaining a
general scheme of description, which covers also the simple 2-component case,
appears irrelevant. It seems desirable to follow up the statistical-thermo-
dynamic treatment made by Onsager, upon this simpler formal basis.

4. DIFFUSION THEORY AND SEDIMENTATION EQUILIBRIUM -

The diffusion equation (9) may be written .
RTB,, Ly,

D= 771\ “on (20)
—+—=) P2
o My
* The equations are reproduced here for the sake of clearness
P12 + P1s P12 P13
—gradpy ="y — Sy — e e
P Pa1 + Pas Pas
— gred = — NNy Jit n} T = ngng ° °
Ps1 Fsa P31 + Pas
— grad pg = — nyng Ji — Ngng Ja + nj Is

ny grad p; + ny grad g, + ng grad p; =0
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Whereas B,y, n,, and n, contain the molecular weights, this is not the case
with L,,. The sedimentation diffusjon equilibrium of a two-component in-
compressible solution has been shown to be given by (cf. Ref.19)

ln m,
x

where w?x is the centrifugal acceleration and m the concentration in g / cm3.
As expected, this thermodynamical expression does not contain molecular
weights. The analogy between equations (20) and (21) is believed to be an
additional support for the appropriateness of the conventions underlying the
diffusion theory, eq. (21) being thermodynamically exact. The factor L.,
has no obvious physical meaning, but it is closely connected to the general
differential osmotic pressure factor @

Ly, = (Vi—V )V imimw’z (21)

2P, P :
g = nlt;;:E ng 5—71,_: (22)
by the relation _
Ly, = @V Vymymy (23)

where V is the partial specific volume.
The theory of sedimentation velocity falls naturally into the same scheme.
As is well known, molecular weight does not enter thermodynamical for-
mulae and cannot be determined without an equation of state. The simplest
assumption regarding the equation of state is in this connection to assume
B,y = 1 (ideal solution). This means, according to equations (20) and (21), that
the following functions of the molecular weights *

1.1 M,
n Ny my

is directly measured by the sedimentation equilibrium of an ideal mixture,
(that is, without integration). The occurance of the function (24) in a thermo-
dynamical equilibrium equation is of special interest, as it also plays an im-
portant role in the diffusion theory of two components. Thus, for instance,
1/n, + 1/n, is the volume in which, in the case of self-diffusion, the friction
between the components is independent of the labelling concentrations. This
is true also in the presence of an additional, chemically different component.
‘This is the case treated in section 1 of this paper, but is seen only in the fuller
treatment 1. -

If the solution isregular (van Laar, Hildebrand), a more complicated
function of the molecular weights is directly measured by the sedimentation
equilibrium.

In the sedimentation equilibrium the self-diffusion proceeds without an
equilization of concentrations. To study this theoretically, one way is to
deduce the sedimentation diffusion equation for a three-component mixture,
which ought not give rise to any considerable difficulties.

_'Ml
=__ 2 + 24

* The molecular weights of this expression do not necessarily coincide with “kinetic’’ molecular
weights (cf. Ref.1).
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5. NOTE ON DIFFUSION AND VISCOSITY

The problem of diffusion in relation to viscosity z for ordinary liquid
systems was treated by H. Eyring ef al. in fundamental papers, and summari-
zed by Kincaid, Eyring and Stearn *. One interesting point is the difficult
question of how much simpler the product Dy might be than each of these
magnitudes taken separately. For two-component systems, the results of
Eyring et al. propose that, for normal liquids, D»/B approximates to a linear
function of the mole fraction of the mixture. Thus Onsager? writes this result

in the form
DB = By N, + B1alN s (25)

Cases of non-ideal mixtures are well known to fall outside the range of validity
of this formula. Later, Hartley and Crank 8 arrived at a similar expression.

A theory of Dy implies, as D = RTB | @ (equation (2)), that we expect
to be able to express the viscosity of a mixture as a function of the friction
between the components; # = f(®). From the standpoint of the present paper,
it would seem that this is too much to expect from the relation bet ween
the components and that too little consideration has been taken of the friction
between equal parts within the mixture. A relation 7y; = f (Dyg, P13, Dys)
would appear to be an increasingly necessary extension, the further the actual

conditions of the mixture are from the hydrodynamic picture in the sense of
Stokes’ law.

Complete reference to the work of others is not repeated here, but is to be found in
earlier publications, as far as they are known to the author.
The author thanks Mr. C. L. Undeman of this Institute for valuable discussions.
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