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It was shown in Part I that very simple conditions are met with if all com-
plexes that are formed by two reactants A and B can be written in the form
B(A,B),, where ¢ is constant, and n variable. In this case, the curves giving
Z=(A—a)/B as a function of log a have the same shape for all values of the
total concentration B and are parallel to each other.

As a matter of fact, parallel Z(log a)z curves are often found experimentally.
It was proved inversely (I, eq. 16—20) that this behavior requires a “‘core +
links” mechanism: if b is negligible in the whole range studied, the general
formula of the complexes must be A,(AB), (r and ¢ constant, n variable)
whereas if the curves are parallel in a range where b is not negligible we must
have the additional condition r=—¢ and thus the general formula B(A,B,).

If the curves —% (log a)s and consequently log % (log a)p are found to be

parallel, the only possible formula is B(A,B), (I, eq. 40—42).

It was indicated in Part I that, for further discussion of the mechanism,
one may conveniently transform the coordinates so that all of the previously
parallel curves coincide and the constants r and ¢ disappear from the equations
(I, eq. 256—26, 44). The experimental data are then reduced to a single curve
which can be compared with a few families of theoretical curves, calculated
under various simple assumptions.

In the present paper we shall only treat complexes of the general formula
B(A,B),. If the general formula of the complexes is A, (A,B), and b is always
negligible, one may consider the core to be C=A, ;B and the complexes as
C(A-C),. It is then possible to use exactly the same equations and families
of curves as will be derived below for B(A,B), (compare I, eq. 33, 34) so there
is therefore no need for a separate treatment.

* Part I: Acta Chem. Scand. 8 (1954) 299.
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POLYNUCLEAR COMPLEXES II 319

List of symbols

total concentration of A (I, 2).
concentration of free A (I, 1).
total concentration of B (I, 2).
concentration of free B (I, 1).
concentration of n:th complex (1).
= §/b, function of u (3).
= 8/b, function of v (3a).
equilibrium constant in (17), (19), or (28).
equilibrium constant defined by (1).
= k, k™, constant (6).
number of links in singular complex (19).
variable integer, number of links in ‘“‘core + links” complex.
number of A in core (if free from B).
complexity sum (3, I 4).
number of A per B in link.

= a'b (2).
= ka’b (6).
value of v for y=4%, (33), (40), (44).
value of v that makes B=2b, n=log 2 (70).
= z -+ log 2—u3 (10).
=1 log a 4 log B (9).
value of z for y=% (10). -

= (A—a)/Bt=Z[t (8).

= (4—ua)/B, average number of A bound per B (4).

= log % (46).

= z - constant, chosen so as to make the asymptote of 5(&) go through
_the origin (51, 53); or (69, ITIc) to make all curves go through # = &
= log 2.
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General equations

We shall assume as before that the activity factors are constant. The law
of mass action gives for the formation of the complex B(A,B), from A and’
B (I, 21):

[B(A,B),] = ¢, = k,b(a’b)* = k,bu" (1)

Here, a and b are the free concentrations of the two reactants A and B,
and the variable » is defined (I, 10) as:

u = a'b (2)

For the complexity sum § and the amounts of A and B bound in complexes
(in mole/1) we find (I, 22):

S = Z[B(AB),] = bl = bf(w) 3)
A—a=a (%j—)b = ab %— (S—Z)b = btuf' (u) = BZ 4)
Bb=b (% ) — bf(u) + uf (u)] (5)
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In the following it will prove advantageous to introduce a new variable
v=ku and a new set of constants [,. Here k is a constant (at first unknown)
related to the equilibrium constants %, (see eq (19) and (28)).

v = ku = ka'b; k,=lk" (6)
8§ = Zbl* = bg(v); g(v) = X" 3 a)
Here g(v) is a function of v only. From (3), (3 a), and (6) we see that
flw) = g(v) = 8b™; uf' (u) = vg'(v) (7)
Equations (4—b5) will then be transformed in the following way:
A—a = BZ = btvg’ (v) (4 a)

B—b = b[g(v) + vg'(v)]; B =b(1 + g + vg’) (5 a)

DATA (a, 4, B)

Plotting of the data

. Let us remember that ¢, the number of A per B in a link, can be obtained
from the spacing of the Z(log a)s curves using equation (I, 24).

In any experiment, A and B, the total concentrations of the reactants,
should be known from the analytical data. If, in addition, the free concentra-
tion a is measured but not b, it is convenient to calculate and plot on a diagram
the two quantities ¥ and z from (I, 25 and 26). Using these equations together
with (6) and (7) we find:

A
V=" ®
y=vg (L+g+vg)? . (8 a)
z=1 log a4 log B 9)
z=log v—log k+log (1 4+ g+ vg’) (9 a)

The expressions for x and y in (8 a) and (9 a) contain only constants and
functions of the variable v, and neither a nor b separately. Then y may be
plotted as a function of z only and all points should fall on a single curve
which is independent of B. Thus our problem reduces to the calculation of the
shape of y(x) under various assumptions and a comparison of the calculated
curves (from 8 a and 9 a) with the experimental one (from 8 and 9).

 This comparison is made easier if we shift the calculated curves along the
abscissa so that they all go through a single point. We shall choose as abscissa
for the calculated curves: '

X =2+ log 2—a, (10)
where z; is the value of z for y=4 (the “half-point”). Obviously all calculated
curves y(X) will then go through the point

X=1log 2, y=1% (11)

Acta Chem. Scand. 8 (1954) No. 2
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We may derive from (8 a) and (9 a) N

z; = log 2—log k + log(v®g’)ymy 12y
which gives with (9 a) and (10)

X =log v+ log (1 + g + vg’)—log (v%g')ymy (13)

One may prepare a transparent diagram with any calculated curve y(X),
place it over the diagram with the experimental curve y(z), and move it parallel
- with the z axis. If a fit is obtained, one may use z; at the half-point and equa-
tion (12) to calculate the equilibrium constants.

Direct analysis

From (8a) we find 1 + g 4 vg’ = (1 + ¢)/(1—y). We insert this into (9a),
differentiate and eliminate d In » by using d In v = (y1—1) d In (1 4 g),
which may be found from (8a), observing that vg’ =d(1 + g)/d In v.
The result is .

log (1+9)= [y do -+ log(1—y)+y log e (14)
-0

From (9a), inserting 1+ g 4 vg’ = (1 +g)/(1-—y) (8a), log v — log k =
% (6), and (14)

x
log u =x—yloge —-fy dx v (15)
)

With data (@,4,B) one might thus use the curve y(x), (14), and (15) to
calculate g(v) = f(u) as a function of u, and then try to find the coefficients
k,(= the equilibrium constants) in the power series (3).

From data (a,b,4,B) one finds » directly. By integrating (5) one may find

L4g=1+f= [ a (16)
0

This will also give f(u) from the experimental data.
However, because of the limited accuracy of the data, these procedures
seem impracticable at least with present techniques.

Choice of hypotheses

In the present paper we shall confine ourselves to studying a number of
simple hypotheses, involving not more than two unknown constants to be
determined with the aid of the experimental curves: ‘

I) Our first hypothesis is that no soluble complexes are formed but that
solid A,B may precipitate. As usual, ‘“A,B(s)” may also contain solvent mole-
cules and inert ions from the ionie medium.

IT) The next simple hypothesis is that out of all conceivable complexes
B(A,B), only one, B(A,B)y, is formed, where N is constant and at first unknown.

Acta Chem. Scand. 8 (1954) No. 2



322 LARS GUNNAR SILLEN

IIT) The other extreme hypothesis is that complexes with all positive values
- for n are formed by a repeated reaction and we shall try three different equations
(28a, b, c) for the variation of the equilibrium constants &, with ».

Hypothesis I: No soluble complex; solid AB may precipitate

In all the mechanisms to be considered we shall find as one limiting case
those curves that would be obtained if only solid A,B and no soluble complexes
were formed (hypothesis I). We shall now derive the equations of these curves.

If some A,B has precipitated — (B—b) mole — we have:

A—a =tB—b); u=ab=Fk1; v=1 (17)

where k1 is the solubility product of AB (including the terms from solvent
molecules and medium iong). We then find from (8), (17), (9), and (10):

_ A—a B —l—b
Y="B ~ "B T B
b (17a)
z = lqg a'B = —log k—log 5 = log k—log (1—y)

. @y =log 2—log k; X =z + log k = —log (1—y)

If the product v = a'b is less than k1, no precipitate occurs and we have
a= A, b= B, y = 0 since there are no soluble complexes.
There will be a sharp break in the curve y (X ) at the point of precipitation:

X = —log(1—y) for X >0

y == O fOl‘ X < 0

The curve y(X) from (18) will be seen as limiting curve in fig. 1 (hypothesis
II, N - «) and fig. 2 (hypothesis III, k, — 0).

(18)

Hypothesis 11: Only one complex formed

Let us assume that the only complex formed is B(A,B)y and that the equi-
librium constant is ¥¥. We then have (cf 6 and 3a):

S = [B(AB)~] = kVb(a'b)¥ = bo¥ = bg (19)
where
9(v) = v¥; vg’'(v) = Nv¥ = Ny (20)
We may derive from (4a), (5a), and (20)
A—a = Ntbg; B—b = (N + 1)bg (21)

The equations (21) may also be obtained immediately from (19) since the
concentration of the complex is bg, the number of A bound per complex is .
Nt and the number of B bound per complex is (N+1).

We shall now see what type of y(x) plot one would obtain with this mechan-
ism. We find from (8) and (21), or (8a) and (20)

y=DNg [1+ (N + 1)1 (22)
Acta Chem. Scand. 8 (1954) No. 2
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Fig. 1. Family of curves y(X)y for hypothesis I1: only one complex B(A ‘B) N 8 formed.

and from (9a) and (20)

z + log k= N1 log g + log [1 + (N + 1)g] (23)
From (22) we find y = } for g = (N—1)! which gives with (23) and (10):
zy = log 2—log k + log N—(1 + N71) log (N—1) (24)
X ==+1log2 — xp=N-1log g+ log [1 + (N + 1)g}—log N +
(1 4 N1) log (N—1) (25)

The expressions for ¥ and X in (22) and (25) contain only N and the single
variable g. One may thus for each N draw a curve giving y as a function of X.

Fig. 1 gives a family of such curves y(X)y with various values for N: 1, 2, 3,
4, 5,20 and . For the curve with N = 1, the abscissa was arbitrarily chosen
as = -+ log k— 1 since this curve approaches the value y = % only asymptoti-
cally (see 24). All the other curves y(X)y intersect at the half-point (11) as
they should.

The limiting curve for N — o is X = —log (1—) as is seen from (22) and
(25) if one lets N - o and g - O in such a way that Ng has finite values.
(For N -» o, Ng = 0 we find its linear continuation, ¥ = 0, X < 0).

Now this is equation (18) derived assuming the precipitation of solid A,B,
which may be regarded as the limiting case of the formation of complexes

B(A,B),.

If the experimental data are given in the form of a curve y(x), one may test
the single-complex mechanism by trying to fit the curve family y(X) of fig. 1.
If a fit is found, the most likely value for NV is found from the shape of the
curve, especially from the upper limit (see 22):

y»—l—v——z_:r_—l for x »> © (26)
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and from the slope at the half-point:

From z;, the value for x at y = }, one can then obtain k from equation (24).

Hypothesis II11: Repeated reaction

The other extreme assumption is that all positive integral values for n are
represented by complexes B(A,B), in the solution. We shall try the following
three working hypotheses on how £, varies with n, where £, is the equilibrium
constant for the formation of the n:th complex from A and B (1, 6):

Mla: k, = kk™;, 1, = ky; kpprkig' =k (28a)
IIIb: k, = kgnk®; 1, = kgn;  kppakn = k(1 + n7?) (28b)
IIle: &k, = k" 3 L, = ko 3 kepyrkint = k(n + 1)1 (28¢)

ln ln
For all three hypotheses, the equilibrium constant for the formation of the
first complex is given by k, = kk,:

tA + 2B = BAB; &k, = [BABla—*b2? = ¢,a*b2 = kk, (29)
The equilibrium constant for the addition of a new link is:
B(AB), + tA + B & B(AB)ns1; Fnpikn' = CpyaCna~t (30)

and may vary with n. With IIIa, k,.1%,® has always the same value, namely
k; if ky = 1, then also % = k. With IIIb, k,.1%;" = k(1 + #1) tends to a
constant value k, but the first few links are somewhat more easily added. With
Illc kyyakr = Ic(n -+ 1) tends to zero with increasing » so that the forma-
tion of the higher complexes becomes increasingly difficult.

The first hypothesis is the simplest and has rendered good service for many
systems. For this reason, IIla will be treated more fully than the other two.
_ It is also what one would expect, from statistical considerations, if the com-
plexes are chain-like.

The two hypotheses IIIb and IITc have been included because it seemed
desirable to find out whether an equally good agreement with the experimen-
tal data could be obtained with widely different assumptions concerning the
behavior of the constants, k,. The assumptions (28b) and (28c) were not chosen
on the basis of any statistical argument (which may have only a limited value
in this case) but because they give an easy summation in (3) and (3a).

Hypothesis I1la: All consecutive constants equal

For hypothesis IITa we find, using (28a) and (3a):

o) . .
90) = 3 1" = lgo(l—o) % 0g'(0) = kyp(1—0)? (31)
. 1
Acta Chem. Scand. 8 (1954) No. 2
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Fig. 2a—c. Families of curves y(X)a, for repeated reaction, hypotheses I11a, I111b, and
IIIc (eq 28 a—c).
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Introducing (31) into (8a) we find -
Y = ko [(1—v)® + ko (2—4))]‘1 (32)

and from (32) and (12) with (31) o
vp= (14 V)% o =log 2—log k " (33)
Finally from (10) and (33) with (9a) and (31):
X =2+ log k=1log v+ log [1 + ky((1—v)2—1)] (34)

With the aid of equations (32) and (34) we may construct a family of curves,
‘giving y as a function of X = x 4 log k for various values of k,. Some of these
curves are given in Fig. 2a. All the curves intersect at the half-point (11) as
they should.

The limiting curve for the family y(X), is that for k, = 0, its equation
being (18), X =—log(l—y). This may be demonstrated by letting k, - 0
and » - 1 in equations (32) and (34) in such a way that k, (1—uv)~2 has a finite
value. It may be seen intuitively that ky — 0, £ = constant means that the
first complex is formed with greater and greater difficulty whereas the addition
of new links is as easy as before. When v is increased towards the value 1,
the formation of complexes starts suddenly and at once leads to very large
complexes, which is equivalent to precipitation.

If ky =1 all links are added with the same equilibrium constant. The
equatlons (32) and (34) then take the simple forms:

Y= . (32a)
X =z 4 log k= log y—2 log (1—y) (34a)

If the experimental data are seen to fit in with the family of curves in fig.
2a, one may obtain k from z;, the  coordinate at the point y = }, using (33).

To find k, one may either use the slope of the curve y(z) at the half-point:
dyy (i-’/_) - 1
(% )y_é— @), =100+ 2 VR (35)

as may be proved from (32) and (34). One may also, for a number of y values,
measure z, calculate 10X using (cf 10):

10% = 2. 106~#p (36)
and apply the equation

ky =y [1—10%(1—y)I? [10¥(1—2y)*]? (37)

Equation (37) may be proved as follows. From (32) and (34), y - 10¥ =
kyv? (1—v)-2. If this expression is used for eliminating v from (32), (37) results
after rearrangement.

: Hypothesis I11b
For hypothesm IIIb we find from (3a) and (28b)

g(v) = Z 1" =k Z o = kgv(l—o)2; vg’ (v) = kgo(1 + v)(1—v)®  (38)
1 1
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Fig. 3. Position of curves for ky = 1 with hypotheses I11Ib and I1Ic in the family of curves
¥(X)#, for Illa.

If the expressions for g and vg’ from (38) are inserted into (8a) we find

y = k(1 + O)[(1—v)® + 2k} (39).
For y = } we find from (39), and from (12) and (38)
2kovi = (1—vy)%; 2y + log k = log (1 + v}) (40)

Thus vy is the solution of the third-degree equation in (40) which may be
solved for any k, value. Finally with (10) and (40), (9a) and (38):

X—log 2 +log (1 +v3) =z + log k =log v+ log [1 + 2kgv(1—v)3] (41)
Fig. 2b gives y(X);, as calculated from (39—41). The limiting curve for
ky - 0is (18): X = —log (1—y). — Fig. 3 shows the curve for k, = 1 with
hypothesis IIIb together with the curve family for IIla.
Hypothesis I1Ic

For hypothesis ITIc we find from (3a) and (28c):

o) 0 "
g0) = 2 Lt =k 3 Ty~ = kole"—1); w'(2) = Kyoe” )
Inserting (42) into (8a) we find:
y = kyve® [1 + ky(ve’ 4 ¢© —1)}1 (43)
From (43), and from (12) and (42): .
et (v,—1)=kg'—1; 2= log 2—log k + log kgje's (44)

From (10) and (44), (9a) and (42):
X + log kovie"% =z + log k =log v+ log [1 + ky(ve’ 4+ &"—1)] (45)
Acta Chem. Scand. 8 (1954) No. 2
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Fig. 2¢ gives y(X)s, as calculated from (43 to 45). Even in this case, the
shape of the curve approaches that of (18) as ky = 0. In fig. 3 the curve for
ky = 1 with III c is shown together with the famﬂy Y(X ), for IITa.

For the special case k, = 1 we have ”i = 1 and the somewhat simpler

expressions:

| y = v(l + o (43a)
X4loge==x-+log k=1log v+ » log e+ log 149 =

= y(l—y)?-log e+ log y—2 log (1—y) (45a)

DATA (a, b, 4, B)

Plotting of experimental data

We shall now see how the hypotheses discussed above can be tested if one
can measure both a and b, <. e. the free concentrations of A and B. One con-
venient way of plotting the experimental data is then to give

n = log % (46)

as a function of log @ with one curve for each value for B, the total concentra-
tion of B.

It has been observed in at least two systems that, within the limits of
experimental error, the curves # (log a)g are parallel and possess the same shape
for all values for B, with a spacing 4 log a proportional to 4 log B. If this is
exactly true, then all complexes must have, as proved in part I (eq 40—43),
a ‘““core + links” formula B(A,B), in which » is variable and ¢ is a constant
which can be calculated from the spacing of the curves using (I, 43).

Just as for data (a, 4, B) it is convenient to transform the coordinates so
tha,t the experimental pomts fall on a single curve. Asordinate we shall take #;
as' abscissa we may choose either (cf 2)

log w=1¢log a + log b » S (47)
“or (cf 9 and 46) '
x=1log a 4+ log B (=log u + 7) (48)

The curve x(log u) is somewhat more. compact than n(x). With 5(z), on
the other hand, the experimental uncertainties in log @ and log b come out
separately, one on each coordinate axis. Thus the #(x) diagram is more suit-
able for discussing the experimental errors and for successive approximations.

Calculated curves

, If g(v) is the function (3a) that follows from a special hypothesis we want
to test, we have from (5a) and (46)

n=1log (1+ g + vg’) ~ (49)
Acta Chem. Scand. 8 (1954) No. 2
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~and from (9a)
z -+ log k=1log v+ log (1 4+ g+ vg’) (50) -

x+log k=log v+ 9 (50a)

On the right hand side of (50) and (49) we have functions of v only. Thus
as k is constant,  should be a function of x.

If there is a maximum value for %, Nmax, the complex with # = %y pre-
dominates at high values for v,and g =1, _+"mexin (3a). One may then prove
from (50) and (49) that the maximum slope for #(x) is (1 + nme) "~ and that
n(x) has a linear asymptote of this slope.

For comparison it is convenient to shift the calculated curves laterally so
that their asymptotes always go through the origin. We shall do this by choos-
ing the abscissa

=z +log k+nl [log (n, +1)+logl, 1] (51)
E=logv+log (14 g+ vy')+nl [log (n,. + 1) + log limax]  (518)
For high v values, 7(&) approaches the asymptote:

n=& 1+ nga)™ (52)
For low v, g - 0, and we have another linear asymptote
' n=0 (52a)
If n is unbounded, we may take
=+ log k+ lim (n! log 1,) (53)
E=log v+ g —}-"fi)n(io (n log 1,) (53a)
n =» QO

If the limit is finite, v has a maximum value, and for high & (53a) approaches
asymptotically the line
n=1¢ (54)

In our three “unbounded’” mechanisms, the limit expression becomes zero
for ITTa and ITIb and infinite for IIlc.

The calculated curves 7(&) may be drawn on transparent paper and moved
parallel with the abscissa axis across the experimental (). If a fit is found,
then (51) may be used for finding the equilibrium constants.

If the experimental data have been plotted as %(log ), one may test them
with calculated curves giving # as a function of (§—): from (48) and (51)

§—n=Ilog u+log k+ nl [log (n, +1)+1logl, 1] (55)
and from (49) and (51a)
§—n =log v + gl [log (n,, +1)+log i, ] (55a)

Equation (55a), with the parameter v, may be used together with (49) for
calculating #7(§—) under various assumptions whereas (55) may be used for
finding the equilibrium constants once a fit has been found between the
experimental n(log u) and a calculated #(&—n) curve.

Acta Chem. Scand. 8 (1954) No. 2 13
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Fig, 4. Family of curves n(&) ~ for hypothesis I1: only one complex, B(A 'B) N 8 formed,
The dotted line is the asymptote n = §& for N = 1.

-2 - o 1 2 L
Fig. ba—c. Families of curves y(&)x, for repeated reaction, hypotheées IIIa, I1Tb, and
IIlc (28a—c).
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Fig. 6. Family of curves n(&—n)s, for Illa. Thick lines = limiting curve for ky = 0.

The asymptotes for 7(&—) will be (cf 52a and 52)

n=20
} (56)
N = Nmax (§—)
If » is unbounded, the second asymptote (if it exists) will be
&—n = 0 (vertical line) (56a)

We shall now give equations for calculating the 5(£) and 5(£—) curves
for each of the hypotheses discussed above. Since it is generally hard to give
explicit equations, we shall express # and £ in terms of a parameter, v or g,
just as we did with y and X.

Hypothesis 1: No soluble complex; solid A,B may precipitate

If some AB(s) has precipitated, we have from (17)
log w+log k=0
and with (48)
z =log a’B =log u + n = yn—log k
We shall put
E=x+log k

so that #(&) becomes a line, 7 = £, passing through the origin.

If the product @’ is less than &1, we have no precipitate and no complex
formation, and thus b = B and 7 = 0. Each of the curves #(£) and n(E—n)
will consist of two lines intersecting at the point of precipitation:

Acta Chem. Scand. 8 (1954) No. 2
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n =& &> 0, precipitate . (87)
n =0, §< 0, no precipitate .

n >0, é&—n = 0 (vertical line), precipitate (57a)
7 =0, &~ < 0 (horizontal line), no precipitate

The two straight lines (57) or (57a) are seen as the limiting cases of the
curves n§(&) or p(é—n) in fig. 4 (hypothesis II, N - o) and fig. 5 and 6 (III,
o = 0).

Hypothesis I1: Only one complex formed, B(AB )y
From (21), or (49) and (20), we find

n=1log - =log [1+ (N + 1)g] (58)

From (51) and (51a) since n_, = N, I, =1, cf (3a) and (20)
E=xz+log k+ N log (N + 1) (59)
t=N-1log g+log [L+ (N + 1)gl+N1log (N+1) (59)
, Since the right-hand members in (58) and (59a) contain only the constant
N and the variable g one should get a single curve for each N by plotting %
as a function of either & or (§—»). These calculated curves can then be com-
pared with the experimental curves 5(x) or n(log u).
A family of curves #(&)y is given in fig. 4. All curves 5(£) intersect at the
point
n=£&=log 2 (60)

The asymptotes of any curve are the lines (cf 52 and 52a)
n=0 }
=& (14 N2

When N tends toward infinity, the family of curves approaches a limiting
curve, consisting of the two straight lines (57).

(61)

Repeated reaction, hypothesis I11a
From (49) and (31)

n = log [1 + ky((1—v)2—1)] (62)

Using (28a) we find n1 log [, - 0 for » - o, whence with (53), (53a)
and (62)

E=x+ logk = log v+ log [1 + ky((1—v)y2—1)] (63)

E&—n =1log u+ log k=1log v (64)

Fig. 5 a gives n(&)s, and fig. 6 5(é—mn)s, for the same k, values as in fig. 2c,
calculated by means of equations (62 to 64). The curves in a family do not
intersect. For k, - 0, the curves tend to the limiting curves (57) and (57a),
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each consisting of two straight lines, these lmes being also the asymptotes for
any curve.

The curves may be used for fitting the experimental data #(x) and #(log u)
Depending on the accuracy of the data, several methods for finding %, may be
invented.

Repeated reaction, hypothesis I1Ib

From (49) and (38)
. 7 =log [1 4+ 2 kyw(l—v)2] : (65)

From (28 b) we find n1 log I, -» 0 for n -» o, whence with (53), (53a),
and (65)

E=x+log k=1log v+ log [1 + 2 kyv(l—v)3] (66)

Fig. 5b gives the family n(&)s,. As with ITIa the limiting curve for ky - 0
consists of the two lines (57) which are also asymptotes for each curve. The
curves do not intersect.

Repeated reaction, hypothesis I11c
From (49) and (42) l

n = log [1 + ky(ve’ + e’—1)] : (67)
As before, it follows from our definitions that
z+log k=1log v+ 9 (50a)

In (53),n 1 log I, - — o for n — o (28 ¢), and hence (53) cannot be used.
The curves n(x + log k),, do not intersect. They do approach the slope + 1
but have no asymptote for increasing . To aid the comparison with the expe-
rimental data we shall, instead of (53), make a shift in the abscissa so that all
curves intersect in the point

n=1Ilog 2=2¢§ (68)
This is achieved by using the abscissa (cf. 50a)
¢ =z + log k—log v, = log v 4 n—log v, (69)
where v, is the value for v when 5 = log 2. This value is the solution of
e (v, 4+ 1) = 1+ k" ‘ (70)

Fig. 5¢ gives the family of curves #(§);, calculated from (67) and (69)
As kg — 0 the curve (&) is seen to approach the two lines (57) like in all other
cages discussed.

More complzcated assumptions

It may occur that the experimental data clearly indicate, using the criteria
given .in Part I, that the main products are complexes of the type B(A,B),
but that the curves y(x) or 5(x) do not fit in with any of the mechanisms
proposed in this paper. Then one may go to more complicated assumptions.
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’A;ea complication of hypothesis IT one may assume that two or three sepa-
rate complexes are formed but no others. This explanation should be resorted

‘to only if there are strong additional arguments for these two or three com-

plexes being preferred to others.

In a repeated reaction, one may try other formulas for the dependence of
k, of n than those given in (28). For instance, there may be a certain minimum
sxzin = N for the complex, so that k, = 0 for » < N and k, = k,&* for
n 2 N.

" Since the available experimental data on polynuclear reactions may be
fairly well explained by the simple mechanisms II or IIIa given here, it has
not been thought worth while at present to give detailed calculations for such

- more complicated cases. The formulas are however not difficult to derive. It

is felt that unless the accuracy is extremely good, one should avoid introducing
more than two arbitrary constants to be determined from the experiments.

Let us suppose that the data for a certain process can be well accounted for
by, say, hypothesis IIIa. Of course this fact is not a proof that (28a) is exactly
followed, and that all consecutive link-addition reactions have the same equi-
librium constant k. However, it would indicate that this approximation is
useful for calculations and that it also gives an approximate picture of the
process.

Distribution of complexes
The chief aim of this paper has been to demonstrate how the experimental
data may be used for distinguishing between various possible mechanisms and

for finding the equilibrium constants involved. Once these are known one may
calculate the concentration of each complex in a given solution (cf 1 and 6).

= [B (AtB)n] = lubv” (71)

Furthermore one may calculate the fraction of all B groups present in the
n:th complex (cf 71 and 5a)

(04 1), _ (04 10"

= 72
B 149+ (72)

and the average number of links per complex (cf 3a)
Zne, vy ‘dlng (73)

o, ¢ dhnv

by inserting the expression for g for the mechanism in question.
The quantities in (72) and (73) are functions of v only.

SUMMARY

The paper deals with the mathematical analysis of data for a system in
which the main products of the reaction between A and B are known (by
methods given in part I) to be complexes B(A,B), with ¢ constant and » variable.

The experimental data are suitably treated by plotting one.#:th of the
average number of A bound per B, y = (4—a)/Bt, as a function of x =
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tlog a + log B. If measurements of b are available, one may also plot n="
log B as a function of 2. In both cases, all experimental points should fallon a_

‘smgle curve mdependent of B. !

These experimental curves y(x) and 7(x) can then be compared with families
of curves y(X) and %(&), calculated for various mechanisms. Here, X and &
differ only by a constant (containing the equilibrium constants) from x, 80 one
can move the calculated curves parallel with the horizontal axis in search for
a fit.

Equations and curves are given for the following hypotheses: I) No soluble
complex; solid A,B precipitates. II) Only one complex, B(A,B)y is formed..
IIT) An infinite series of complexes is formed, by repeated reaction, with all
positive values for n. Three equations are tried for the variation of k, with n:
IITa: k, = kok*, I1Ib: k, = kynk” and Illc: k, = k,k"/|n. Here k, is the equi-
librium constant for the formation of the n:th complex from A and B.

The curves for precipitation of solid A,B (hyp. I) are found as the limiting
case of a single complex (hyp. IT, N - «) and of repeated reaction (hyp. III,
kg = 0Q).

By transformations described in Part I, eq. 30—34, the same families of
curves may also be used to treat other “core -+ links’” mechanisms, of general
formula A,(A,B),.
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