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On Equilibria in Systemsb with Polynuclear Complex
Formation. I. Methods for Deducing the Composition of
the Complexes from Experimental Data. »Core -+ Links”

Complexes

LARS GUNNAR SILLEN ,

Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm 70, Sweden

he formation of a series of consecutive mononuclear complexes has been

treated by a number of authors. Equations and diagrams have been given
to show how the equilibria are shifted with varying composition of the solution
and how the equilibrium constants involved can be calculated from .experi-
mental data of varying type and accuracy (e.g. N. Bjerrum !, J. Bjerrum 2,
Leden 3).

The formation of polynuclear complexes has not met with the same interest.
In general they have been considered as an annoying disturbance, impeding
the measurement of the interesting mononuclear equilibria, and not being
studied for their own sake.

Sometimes, as for instance in the chromium(III) hydrolysis studied by
N. Bjerrum and Faurholt 45, the polynuclear complexes are formed by very
slow reactions. In other systems, such as some of the copper-complex systems
studied by Fronaeus ¢, the polynuclear complexes seem to be formed by rapid
reversible equilibria. Fronaeus eliminated them by extrapolation of his data
to low concentrations, where the mononuclear complexes predominate. A
similar procedure was attempted in Ahrland’s paper 7 on the hydrolysis of the
uranyl ion, although the main reaction products in this case are obviously
polynuclear complexes.

In systems where polynuclear complexes occur, the equilibrium data have
sometimes been explained in terms of reactions by which only one or two poly-
nuclear species are formed. Such an explanation may, in a certain concentra-
tion interval, be approximately true for the equilibria between CrO3-, HCrOp,
and Cr,0% in dilute acid chromate solutions (see e.g. Neuss and Rleman 8),
although there is certainly evidence for the formation of other polynuclear
complexes, e.g. Crg0%;. In many other cases one may doubt whether it is
experimentally proved or even at all likely that Nature would select, out of all
possible polynuclear complexes, exactly the one or two proposed by a certain
chemist.
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In later years, evidence has accumulated that in many systems an appa-
rently unlimited series of polynuclear complexes are formed. It is believed
that the first attempt to formulate such a mechanism quantitatively was the
work of Granér and Sillén ? on the hydrolysis of the ion Bi**+ which could be
explained in terms of the formation of polynuclear complexes Bi,;;0,"+3+,
Later on, Brosset 1° has suggested that the aluminium ion forms complexes
Al (OH)3),1) in the acid pH range and Al,(OH)3,4: in the alkaline range.
Recently, Leden !* has found evidence for the formation of complexes Ag,Iints >
and the corresponding complexes of thiocyanate and silver ions. As will be

shown in subsequent papers, a similar mechanism can explain the equilibrium
data in several other systems as well.

If polynuclear complexes are formed, the number of possible complexes,
and thus of equilibrium constants, is infinitely larger than when there are only
mononuclear complexes. If one finds one mechanism that can explain the
experimental data, one may thus be in doubt whether the same data could not
be explained equally well by a quite different mechanism.

In the present paper and a few ones following an attempt will be made to
discuss the mathematical laws for the formation of polynuclear complexes,
both under rather general assumptions and for a few special mechanisms.
The chief aim has been to find out how much information on the mechanism
one can really find from the experimental data, which by necessity are of
limited accuracy and cover a limited range of concentrations.

The discussion is not limited to complexes of a metal ion and some ligand.
The two complex-forming species A and B in the following treatment may be
any charged or uncharged molecular species: Ag* and I or I” and Ag™, a
metal ion and OH" or any other ligand, a fatty acid HA and the corresponding
ion A", H* and A~ or SiO, and OH" ete.

In this paper we have made two fundamental assumptions: ¢.e. that we are
dealing with real equilibria and that all complexes are dissolved in the solution.
If equilibrium has not been attained, all arguments based on the law of mass
action are of course invalid unless the slow reactions are so slow that they can
be neglected.

The precipitation of a solid phase of constant composition will be found as
a special case of several mechanisms discussed ir the following (see part II)!2,
However, there is also the possibility that A and B form a separate phase of
composition variable within a certain range. This behavior may not be
expected to be usual for the hydrolysis products of metal ions or for the
polynuclear silver halogenide complexes but has been proposed for the micelles
in soap solutions. We hope to be able to return to this point later on in connec-
tion with work now in progress in this institution.

Equations for equilibria with a solid solution phase are not very difficult
to set down. However, it is felt that one should first have real systems to test
the equations in order to see which of them are really practicable with the
present accuracy of measurement.
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List of symbols

total concentration of A (2)

concentration of free A (1)

total concentration of B (2)

concentration of free B (1)

= B = ‘“total concentration of C”’ (32)

free concentration of complex C = A,,B (30).

concentration of n:th complex in (21) or (31)

= Sb1, function of u (22)

equilibrium constant, defined by (21) or (31)

singular value for n, text around (27 to 29)

variable integer; number of links in a ‘‘core -+ links” complex
singular value for p, (27 to 29)

number of A in a complex (2)

singular value for ¢ (27 to 29)

number of B in a complex (2)

constant partial derivative in (16), obtained from spacing between
Z(log a)y curves

constant number of A in core (if free from B); (8 a) and Table 1
complexity sum (4)

constant number of B in core (if free from A); (8 a) and Table 1
constant partial derivative in (40), obtained from spacing between

ROV I I S QT8

!i% o

B
log b (log a); curves

constant number of A per B in link; (8 a) and Table 1
= a'b (10) (= ac in (30))
=1t log a + log B (26)
—a 7
=& 1t ®

= é_;_a (7), average number of A bound per B

B
] =log 7 (44)

%,  equilibrium constant, defined by (9)
%y, equilibrium constant defined by (3)
@ = Sa~, function of » (11)

N © 88

General equations

We shall denote the two reactants by A and B. They may be charged but
for simplicity no charges will be indicated. Let the total concentrations of the
reactants, including the amounts bound in complexes, be 4 and B mole 171,
and the free concentrations.

[A]=a and [B]=0b (1)
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When A and B react, one or several complexes A,B, are formed in the
solution; here p and ¢ may be any integer. For the total concentrations

A and B we have
=a + Zp[A,B,]; B=0b + Zq[A,B] (2)

where the summations are made over all possible sets (p, g) excluding (1, 0) and
(0,1) which correspond to free A and B.

We shall assume that we can regard the activity factors as constant; if A
or B or both are charged, the reactions must be studied in a constant ionic
medium. Consequently we can use concentrations instead of activities in the
law of mass action and measure ionic concentrations directly by emf methods.

For the formation of any complex A,B, we then have

pA + ¢B = A,By; [A,B,] = #,0°0, (3)

where x,, is the equilibrium constant of the reaction.
It is convenient to introduce a quantity S which might be called the

complexity sum;
8 = Z[A,B;] = Zxpatt? (4)

From equations (1—4) we find the amount of A bound in complexes, 4—a
mole/1:

S as
— Phe — Kl
A—a = Zp[A,B,] = Epryath a( aa) ( alna),, (5)
Similarly the amount of B bound in complexes, B—b mole B/1, is
a8 as
PhY —
B—b = Xgx,afb b ( ab) ( alnb),. (6)

A quantity which we shall often have use for is the average number of A
bound per B; we shall denote it by Z

Z=é:f_ (1)

B
It follows from (7), (5), and (6)

G, (%),

LT,

Types of experimental data

(7 a)

In studies on complexity equilibria, it should always be possible to measure
the total concentrations 4 and B by chemical analysis or to calculate them
from the way the solution has been prepared. It is often convenient to let
one of them, say B, be constant in each group of experiments. Then B has
‘only a limited number of values: B,, B,, B, etc., whereas 4 is varied freely.
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It is often possible to measure one of the free concentrations a aﬁd b,
sometimes both. Since the following equations will be applicable even if A
and B are interchanged, we may restrict our treatment to two cases:

Data (a, A, B). (Equations 14—38). Only a is measured but not b. The
results may conveniently be plotted by giving Z = A;a
with one curve for each B value: B,, B, etc. An example is the hydrolysis
of the thorium ion (Hietanen 3) where [H*], which is proportional to [OH 2,
was measured by emf methods but not [Thé+]. ’ ‘

Data (a, b, A, B). (Equations 39—49) Both @ and b are measured. If,

say, b is more accurately known than a, then —b— and Ej are the most

as a function of log a,

B A
accurately known functions but f-iBj and %Eg may also be calculated

and plotted, e.g. as functions of log a. An example is the hydrolysis of Bi3+
where both [Bi®*+] and [H*] could be measured °.

Other types of data: Suppose that one has measured the solubility of a
certain solid A,B, (which may in addition to A and B contain solvent molecules
and ions from the ionic medium) *. Then one knows that in all solutions the
product afd@ is a constant, at first unknown. In general, solubility data alone
are insufficient for a mathematical analysis of the equilibria in a system with
polynuclear complexes, since such data are limited to a single curve in the
(a, b) field. With emf methods, on the other hand, one can cover a two-
dimensional area.

Two-dimensional areas in the (a, b) field are covered also by extraction
or ton exchange measurements. These methods have proved valuable for study-
ing the formation of mononuclear complexes, in which only one uncharged
complex is extracted (Rydberg 4) or only one or a few charged complexes
are taken up by the ion exchanger (Fronaeus 1%). If polynuclear complexes
are formed, one may expect a number of different complexes to be extracted,
or sorbed in the ion exchanger. Such data may be attacked by the same
general methods as given below, after introducing a few more reasonable
assumptions. They shall not be discussed here, however, nor shall we discuss
optical data which do not seem suitable for investigating polynuclear com-
plexes (cf. Fronaeus 6, p. 89 ff) unless it is possible to devise an optical method
which gives directly the number of A—B bonds.

Representation of (p, q) set ‘
The set of all pairs of non-negative numbers (p, ¢) can be represented as a

two-dimensional array of points in one fourth of an infinite plane **. (Fig. 1)

We shall denote by black dots @ those points corresponding to complexes

* Eg.,if A=1I",B = Agt, and the ionic medium is NaClO, in water, then NaAgl,(H,0)51(s)
would count as A,B(s).

** If one would prefer to define the reactants so that p or ¢ may become negative (say,
to consider the formation of OH-~ complexes as & subtraction of H+), the (p, ¢) domain
would be different, but nothing would be changed in the following argument and equations.
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a b 4 c
9 coeeeocccs -4 . q slope}
:::::::::: core3links
:::::::::: core«2links
:::::::::: Jink core+1link
B?:::::::oo: BA.B.‘.../:‘B . - core
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d e
AB(AB,)
gt 484, q
A2B2(A28n
AB2
BetAs
A o A P

Fig. 1. Qeometrical representation of the (p, q) set. Points = pairs of integers (p, q),
dots' @ = pairs (p, q) corresponding to an existing complex ApBy. The pure components A
and B are |dots with circles @ in a, b, d, and e. a) No complexes formed. b ) Only mono-
nuclear complexes A,B (n = 1,2 ... 6 ). ¢) Compositions of complexes correspond to ““core’ +
n “links”; the corresponding points; are on a straight line with intercepts r and s, and
slope 1/t. d) Two “core + links” mechanisms: complexes A3By(4sB ), (r = —2,8 = 1,
t=2; dots @) and complexes AB(AB,), (r =4},8 = —1,t = }; circles 0 ). e) Only
one complex formed, ApBy = B(A4,B)N-

that actually occur in the solution. Fig 1 a represents a system where no com-
plexes are formed: there are dots only for A (1,0) and for B (0,1). In Fig. 1 b
there are in addition mononuclear complexes A,B up to n = 6.

For any pair of reactants, it would seem unlikely that the polynuclear
complexes, if they occur at all, would be spread equally over the whole area.
For instance, if A and B are ions, complexes corresponding to points close to the
coordinate axes are not likely to occur at a distance from the origin, since they
would consist of large clusters of ions of the same sign, containing only a few
opposite ions. Let us imagine that there is over each point (p, g) in the diagram,
a rod, perpendicular to the paper, the height of which gives the concentration
of the corresponding complex A,B, in a certain solution. Then it seems likely
that the ends of the rods would lie on a ridge, making an angle with both
coordinate axes.

For any type of data it is not so hard to devise some straight-forward
mathematical method — involving, for instance, repeated division by a or b
and extrapolation to 0, or repeated differentiation — that would finally give
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us a complete set of equilibrium constants x,,, one for each complex A,B,.
Unfortunately such methods of calculation would require an accuracy for the
data which is hardly ever met with in practice. So one must in practice test
various simplifying assumptions.

THE “CORE + LINKS” HYPOTHESIS

Restrictions on p and g¢

We shall see in the following that a rather frequent type of experimental
data leads to the conclusion that all complexes that exist in appreciable
amounts have a composition corresponding to a certain “core” - a varying
number of ‘links”.

We shall now study the hypothesis — the “core +- links” hypothesis —
that no other complexes than these are formed. In the (p, ¢) diagram this
means that all complexes that occur correspond to points on a straight line,
passing through the composition of the core and with a slope depending on the
composition of the link (see Fig. 1 ¢). In Fig. 1 d are given two specific examp-
les: in one (black dots), the core is A,B, and the link A,B and thus the general
composition of the complexes is A. 2By(A;B),. In the other (open circles),
the core is AB and the link AB,.

We shall characterize the line by its slope 1/¢, its intercept r with the p
axis and its intercept s with the ¢ axis (Fig. 1 ¢). These three quantities are
related by

r = —Is (8)
and the equation of the line is

= tg + r = t{g—s), @)

One may also say that the complexes can be written as 4,(A,B), or B{(A,B),,
where r, § and ¢ are constants and the number n stands for any number that
will make p and ¢ integers. Table 1 shows, for a few specific examples, how

Table 1. Formulas for complexes built up of “core’ + n “links”.
Possible ways of representing complexes

core link core(link),, A,(AB), B(AB), r 8

™

ABy,  AB  A,By(A,B),  AL(A,B),  B(A,B), —2 1 2
A,B AB  A,B(AB), A(AB), B.,(AB), 1 -1 1
AsB, AB, AsB,(AB;), AQ(A%B In B-L(AiB)n 2 —4 3
AB AB, AB(AB,),  A(A4B),  B,(AB), 3 —1 3
B AB  B(AB), A.(AB),  B(AB), —t 1

A AB A(AB), A(AB), . B./(AB), 1 -1

- AlB (A:B In (AtB In (AIB)n 0 0

any ‘“‘core + links” formula can be transformed to either one of these two
forms. Of the constants, ¢ is usually positive, whereas either r is negative, or s
is negative, or both are zero. One or two of the constants or all may assume
fractional values.
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The “core - links’ hypothesis does not require that all complexes on the
line (8 a) are really formed in the solution. Perhaps only one or a few com-
plexes really ocour. What we have agssumed is however that no complex A,B,
i8 formed in appreciable amount which does not correspond to a point on the
line (8 a):

p=tg+r

We shall follow this hypothesis and see how the experimental data can be
used for finding r and ¢. If the experimental data lead to and are consistent
with a certain line p = tq -+ r, this should indicate that the ‘“‘core - links”
hypothesis, even if not absolutely true, is a useful approximation.

If only one or two polynuclear complexes exist, our hypothesis is automatic-
ally valid since it is always possible to draw a straight line through one or two
points (see e.g. Fig. 1 e).

In passing, it may be noted that this description of the ‘‘core - links’
complexes as A,(A,B), or B,(A,B), can be applied to mononuclear complexes,
AB, (r = 1,t = 0), but not so well to 4,B. This little lack of symmetry has no
practical importance since a system with only mononuclear complexes is
easily recognized (see below) and can be well treated by the mmple methods
already given in the literature.

Equilibrium equations

If the “core + links” hypothesis is valid, only those equilibrium constants
%,, that correspond to points on the line (8 a) will differ from 0. We shall denote
the equilibrium constant for the formation of A,(AB), by x,.

(r 4 nt) A + nB = A(AB),

[A(AB),] = %,a"+"" = %, @' (@h)" = x,@u" ©)
We have introduced for convenience the variable
‘ u = a'b _ (10)
Introducing (9) into (4), we find
S =aZxu" = a’p(u) (11)
Equations (11) and (5), and (7) give
A—a =a (i—i)f_— o [r pu) + tu w’(u)] = BZ (12)

. In the partial derivation of ¢, (10) should be remembered. Similarly we
find from (11) and (6)

B—b =150 (gg)“: a’up'(u) (13)

Equations (12), (13), and (10) will be the basis for the following discussion
and for our methods for finding r and ¢ from the data.
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TREATMENT OF DATA (a,4,B)

Th e Z(log a)B;curves; limiting values for Z
Let us assume that we have summarized our experimental data by plotting

Z = A;a as a function of log @. We thus have a number of curves, on each

of which the total concentration B has a constant value: B,, B, etc (see Fig. 2).
As a matter of fact, in practically all systems hitherto studied these curves
Z(log a); seem either to be all parallel with a spacing (4 log a) proportional to
4 log B or to coincide. These two types of behavior will be dealt with separa- -
tely; they both logically lead to a ‘“‘core 4 links’” mechanism. Then some
equations will be given which may be used for finding r and ¢ in other cases,
assuming the ‘“‘core + links” hypothesis to be valid for them too.
Sometimes the concentration of one complex 4,(A,B),, with one special
value for », may predominate over the concentrations of all other complexes

and that of free B; then'the average number of A bound per Bis Z = ¢ + ,—;: ,

as can be seen directly from the formula of the complex (and can also be derived
from equations 11—13).

Sometimes the concentration of free B is negligible within the whole range
studied — an example is the formation of aluminate complexes OH(AI(OH);),
(r = 1, t = 3, » may vary) 1%16 where the concentration of free AI*+ is negligible
in the whole range in which these complexes have been studied. Then Z has
the two limiting values (compare Fig. 2 b)

A—a ’ t+ﬁm for decreasing log a i r>0 and

B t + for increasing log a always b« B

Z = (14)

Equation (14) may be derived from (11—13) assuming r to be positive, as it
generally seems to be in such cases. (If r were negative, %max and nm, would
change places in (14).) If » can have any value between 1 and o, then the
limits for Z are ¢ and ¢ -+ 7.

If, on the other hand, free B predominates over ail complexes at one end
of the range studied, then (compare Fig. 2 a)

2 Ad—a 9 for decreasing log a (b = B)

B N, T (15)

for increasing log a (b << B)

Here r is usually negative; if %, = o0, the limits are 0 and ¢. (If r were
to be positive, the limit for large @ would be Z = ¢ + r/%min.)

Parallel curves Z(log a)

It is very often observed that the curves giving Z(log a), have the same
shape, within the limits of experimental error, and are only shifted parallel
with the log @ axis. Moreover it is found that the spacing 4 log a between

Acta Chem. Scand. 8 (1954) No. 2
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two curves, say for B, and B,, is proportional to the logarithm of the B ratio,
A4 log B=log (B,/B,). Let usdenote by R the constant ratio 4 log B/4 log a.
We then have

2 log B) b ) R
(m z-—- R = constant; Z(d"' B) (16)
t.e.Z = A;—_a, must be a function of a—RB.

B
Let us start with the general equations (5), (6), and (7), permitting a
priors any formula A,B,. We find

_A—a  Zpryafb’!
2= "B T1F Zquab {17
@B = aR(b + Zqupa?b?) = aRb(1 4 Zqx,a?b?-1) (18)

If Z is to be a function of a~®B only, then the conditions are:

1) If b is not negligible in comparison with B, all terms a?b¢-! in the sums
in (17) and (18) must be powers of a—®b, which appears as a separate term
in (18); thus p = —R(¢—1) or

p=—Rq+ R (19)

As seen by comparing (19) with (8 a) we would have “core - links”
complexes with
R=r=—ts=1 (19 a)

It is more convenient to write the formula of the complexes as B(A,B),
than as A_4(AB),. In this case the spacing gives both r and ¢{. If only one
complex A_ B, occurs, the Z(log a); curves also become parallel (eq. 29 below).
This is best treated as a special case of B(A,B),.

2) If b s negligible in comparison with B, the “1” disappears in the deno-
minator of (17) and in the last term of (18). We may then multiply both sums
in (17) by aRb so that the sums in (17) and (18) contain the same terms
a*Rp!. The condition for Z to be a function of a—%B is then thdt all these
terms are powers of the same variable. We may always write this variable
in the form a'b, where ¢ is a constant to be determined. We may thus from
(16) deduce the equation '

p—R =1q (20)

By comparing (20) with (8 a) we find that we would still have ‘“core + links”
complexes; the general formula is A, (A,B), where

r=R (20 a)

may be found from the spacing of the curves. To find f one may use the limiting
values of Z, and (14).

Consequently, if the family of curves Z(log a), turns out to be parallel, the
chief product must be “core - links” complexes, and then the general formula
can be obtained from the spacing and the limiting values. As a further step
one should like to find out the details of the mechanism: whether one or several
complexes are formed and the magnitude of the equilibrium constants.
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a b
Z Z
r
t+ Fm—m
B, B, 83 — B
increasing
r r
t P *
increasing
(0] log a log a

Fig. 2. Set of curves Z (log a )p, schematical. For each curve, B has a constant value:

B,, B, e¢tc. The horizontal spacing between two curves at a certain Z is denoted by A log a

in the text. a) Parallel curves, corresponding to complexes B(A;B ),. b) Parallel curves
corresponding to A,(A.B), in a range where b is negligible.

A practical approach, since Z is a function of aB (16), is to plot some
function y of Z versus some function 2 of a~B. Then all points should fall on a
single curve y(x) and our task would be confined to testing the experimental
data against theoretical curves y(zx) calculated under various assumptions.
It is advisable to eliminate the constants ¢ and 7 from y and # so that the same
theoretical curves y () can be applied to systems with different values for r
and ¢. It is also desirable that the connection between y and x on one hand,
and the measured quantities on the other, be so direct that one does not lose
the feeling for the real accuracy and the possﬂole interference of expenmental
errors. Suitable functions are given in (25) and (26).

1) Complexes with B core, B(AB),. If r = —t, we may write the general
formula for the complexes as B(A,B),. Here ¢ is a constant whereas n may
vary. We then have, denoting by k, the equilibrium constant for the for-
mation of the n:th complex,

[B(A,B),] = ¢, = k,bu” (21)
u = a'b (10)
and from (4 to 7), (21), and (10):
S =X, = b2k, u" = bf(u)

A—q — a(gf) — ab % (3_1;)1,: btuf' = BZ (22)
B—b = b(f + uf’); = b(1 + f + uf)
_ A—a tuf’
2="B TT¥itor )

Acta Chem. Scand. 8 (1954) No. 2
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Here f(u) is a function of u. If one compares the expressions for 8 in (11)
and (22) and remembers (19 a) and (10), it is seen that uf(u) = @(), the func-
_ tion in (11). It is easily verified that for Z constant, ¥ = a’b = constant,
B = b . constant, and thus a’B = constant, or

d log B) . B
(3 log al; —t in the whole range (for r = —i) (24)
This is equivalent to our previous equations (16) and (19 a).

A convenient way of plotting the experimental data is to give a diagram
of y(x) where (eq 22 and 23):

_A—a uf’
B it Tl (25).
z=1tlog a4 log B =log u + log (1 + f + uf’) (26)

Since each of y and z is a function of % only, y must be a function of z
only and all experimental points should be on the same curve ().

This curve can then be tested against various assumptions concerning the
equilibrium constants k,. This will be the subject of part II in this series.!?

1 a) Only one complex ApB, = B(4,B )y. If only one complex is formed,
say ApB, = B(AB)x, we have from (4) to (7)
8 = [ApBy] = xpya”h?
A——a = Pxpyah? = BZ } 27
B—b = Qxpyatb?
Z = P [Q + wpha To1011 (28)

Thus if Z is kept constant, aPb?-1 = constant, B—b = b - constant, B =
b . constant, a’B%-! = constant and

2log B) _—P
(9 log a/z @—1 — (29)

The curves Z(log a), will be parallel in the whole range. If @ = 1, they will
even coincide. A single complex may be treated as a special case of 1), writing
_ the complex as B(A,B)y with N = @—1,¢ = P/(Q—1). Then in (21),all k, = 0
except ky which has a finite value. The same functions y and x as given in
(25) and (26) may be used. To find out whether one or several complexes are
formed one must analyse the curve y(x), as will be discussed in Part II 12,

2) Complexes A,(A,B ),; b negligible. Let us assume that b, the concentration
of free B, is negligible in the whole range so that the only species presentin
measurable quantities are A and the complexes A,(A B),. To get equations
of the same form as in 1), we shall consider the ‘‘core’’ of the complexes to be
the smallest possible complex, A, ., B = C. We shall use

[A,.B] = [C] = ¢ [A4BAB] =[CA,Cl=c; .....
[A,+:B(AB),] =[C(ALC),] =¢,; ac=u , (30)
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We can write the reactions as reactions between A and C:
2A . Ba A BAB -+ rA or 2C« CAC +rA
¢, = kye(ac) = kyecu

(n + 1)A,4:B & A,B(AB), + ™A or (n + 1) C= C(ALC), + rnA
¢, = kjou (31)

These equations are analogous to (21). In fact, our new u = a~c differs
only by an unknown constant factor (the equilibrium constant of (» + t)A + B
« C) from a’b. ‘

The total amount of C present per liter, C, is equal to B. We shall let the
subscript ‘“c” indicate the quantities obtained if the reaction mixture is
considered to be made up from A and C instead of from A and B. For instance,
the total amount of A, 4., is obtained by substracting from the previous}4 the
amount bound in C. One can verify that

A, =A—(@r +1)C; C=B )
0
8, = Zc, = cZku” = cf (u)
1
A—a =a (&) = —rcuf’ = Z,C (32)
a /.
a8\ _ ,
O—om o ) = off + uf)
The two quantities ¥ and = to be plotted are (eq. 32)
: A—a
R L T (33)
Y=o ™~ r 1+ f+uf

x= —rloga+log C= —rloga+log B=Ilogu-+log(l 4+ f+ uf’) (34)

Equations (33) and (34) have the same form as (25) and (26). The same
theoretical curves y(x) as for the B(AB), complexes can thus be used for
finding the function f(u) for the C(A_C),.

Coinciding curves Z(loga)

B :
only parallel for various B, but also actually coincide. This means that Z is
a function of @ only. Since the partial derivative R in (16) becomes infinite,
the formula (19) for the complexes becomes indefinite. We shall return to the
general equations (5), (6), and (7), admitting a priori any complex A,B,

Suppose that the curves giving Z =

as a function of log a are not

A—a _ Zpu,ath?
B T b+ Zquah?

Z = (17 a)
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What are the conditions that Z is to be a function of a only?

1) If b is not negligible, it is necessary that the sums are of first order with
respect to b, so that b can be eliminated. This means that ¢ is always = 1,
so that the complexes are only mononuclear, -A,B.

2) If b is negligible in the denominator in the whole range, b can be elim-
ated from (17 a) provided only one value for ¢ exists. This value need not
necessarily be 1. Thus the complexes must be ‘homonuclear”, either only
A,B or only A,B, etc. (If p/g = constant, Z = constant. In this trivial case
all Z curves coincide in a horisontal line — it is met with in a concentration
range where b is negligible, and either one complex predominates, or all com-
plexes have the formula (A,B),.)

The methods for dealing with mononuclear complexes have been treated so
fully by other authors that there is no need to go into them here. The adaption
of these methods to homonuclear complexes is easy, if the need should arise.

General equations for finding » and ¢ from (e, 4,B) data

At present it may not be profitable to discuss in detail all other possible
ways in which the family of curves Z(log a), might behave. We shall assume,
a8 a working hypothesis, that the ‘“core -+ links” hypothesis is valid. We
shall then limit ourselves to some general relationships which may be helpful
for finding r and ¢ from any set of curves and also discuss how to recognize a
set of curves with » = 0 (general formula (A,B),). Should the need arise, the
general equations given here can certainly be applied to other special cases as
well.
The formulas for the limiting values for Z, given in (14) and (15), may also be
useful for finding r and ¢.
Spacing for b < B. If, in a certain range of the curves, the concentration
of free B, b, can be neglected in comparison with the total concentration B,
we find from (12) and (13) Z =1¢ + r ———uz(}& . If Z is not invariable (see
below) it must be a function of  only. Consequently, if Z is kept constant, u is
constant, and from (13) neglecting b: B = a’ug’(u) = a’ - constant, or log
B =r log a + constant. This result may be written in differential form:

2 log B)_
(aloga z_-rfor b«B (35)

and is identical with equations (16) 4 (20 a).

In general one may expect (35) to be approached with increasing Z. How-
ever, if the ratio p/q is the same in all complexes, then b is not negligible in
comparison with B until Z becomes constant. This complication will occur
either if only one complex is formed, say 4,By, or if r = 0 and thus all com-
plexes have general formula (A,B),. Each of these cases is dealt with separa-
tely in this paper.
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Spacing if B and one éomplea: predominate. If we can neglect all molecular

species except A, B, and one complex, say A,B, = 4,(A,B)y, then we have

already proved (see 29 where however we set r = —i): /

(6 log B) P r+ Nt

dlog a)z = = (29 a)

z  Q—1 =~ N—1|

This equation is, of course, useful only when b is not negligible in compa-
rison with B; otherwise Z is constant = P/Q, giving a horizontal line.

Spacing for b = B. In the region where complex formation just starts, and
thus Z is small, we may assume that practically only B and the lowest complex,
with % = %, exist. Then from (29 a)

alogB) 7 < Nint ‘ _
(a Tog a/; adira— for b = B (36)

If %min = 1, one of two cases may occur: (a) r = —*#, which makes the
expression (36) equal to —¢. This case, which gives a series of parallel curves,
has been dealt with. (8) r + ¢ 7 0, which means that the derivative in (36)
is infinite and that the spacing between the curves along the log a axis approa-
ches zero for decreasing Z. ,

Curves for a(A—a ). If one wants to test a certain value for » and to find
t, one may calculate the quantity a—(4—a) and plot it as a function of
log a with one curve for each B value. The following relationship may prove
a useful test:

r for b B -
(6 log B) _ 2 (37)
a (Ad—a)

dlog a M_¢forb= B

As seen from (12), a (A—a) should be a function of u only. When a~*
(A—a) is kept constant, = a'b is constant and B—b = a’ - constant. For
B>»>» b, B = a - constant, which is the first relationship in (37). For b= B,
on the other hand, % = a’B = constant, which gives the second relationship.

Complexes (AB),: r = 0. If the general formula of the complexes is
(AB),, =10 and we have from (12) and (13)

A—a = tugp'(u) = By
B—b = ugp'(u) = By (38)

where y = Z/t as in (25). We see that b = B(1—y); thus b cannot be neglected
in comparison with B until ¥ becomes 1 and Z = ¢. In this special case we have
no help of (35) in determining r and ¢.

However, if it is suspected that (A,B), is the general formula, one can test
it, e.g., in the following way. The value for ¢ may be obtained either from
(37) or as the upper limit of Z. Then we can calculate for each point b = B—
A—a . A—a .
— Now, if ¢ log a 4+ log( —-——t—) =t log @ -+ log b = log u is plotted
on the horizontal axis and 4—a (or log (A—a)) on the vertical, all experimental
points should fall on one curve since 4—a should be a function of » only.
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TREATMENT OF DATA (a,b,4,B)

If both @ and b can be measured very accurately, and if the “core -+ links”
hypothesis is assumed to be valid, one may devise several ways for finding r
and ¢ based on equations (11 to 13). We shall consider a rather unfavorable
case: a is measured, but the difference (4—a) cannot be calculated with
enough accuracy to be of much help. Our main source of information will be

a set of curves giving, for a series of constant B values, % (or better log g) as
a function of log a.
For low a values, both of these functions give horizontal lines, % = 1, and

log i_;' = 0. With increasing log a, %—» 0 and log %? - o, At very high values

for log a, b {{ B and the complex A (AB), with maximum value for %, %max,
predominates provided r is negative, as usual; if 7 > 0, % predominates.
Then we find, e.g., from (27)

B
9 log —) (a log b) P r
b ) =—(-2—) == =t +— (39)
(ﬁo—g-—a 5 d IOg a/r Q Nomax

Thus if » is unbounded, the maximum slope is .

Parallel curves log % (log a)g.
Let us assume that the curves log%2 (log a); for different B values are
parallel with spacing 4 log a proportional to 4log B. The. curves of % (log a)

or any other function of 133 are then also parallel, with the same spacing. This

may be expressed as

d log B) __ m_ B .
(0_log—a g— T = constant or k3 (a”B) (40)

We shall start with (6), assuming a priori that all complexes A,B, may exist.
We find
B

7= 1 4 Zgupa?bt; aTB = aTb + Zqx,at+Tb (41)

The condition for J_: to be a function of a”B only is that all terms a?be+!

P ey

are powers of a”b. Even if b <¢ B, no new possibilities arise in this case. Thus
p = T'(g—1) for all complexes (42)
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By comparing (42) with (8 a) we find that we have ““core - links’’ complexes
with : ‘
r=—"T,8=1,t=1T (42 a)

The general formula for the complexes is then B(A,B), with ¢ = 7". Thisis
the same as case 1 which we met with for parallel Z(log @), curves. We can
apply equations (21) and (22) with » = —+£. Using (22) we verify (the proof is

similar to that of (24)):
dlog B ' ,
(Frog )= )
We can reduce our data to a single curve, for further discussion, by plotting
B '

n=1log 3= log(l + f + uf) (44)

as a function of
z=1tlog a +log B=1log u 4+ log(l 4+ f + uf') (26)

or of log u =t log a + log b.

The analysis of such curves will be treated in part IT 12

The case with only one complex A,B, is conveniently treated as a special
case of B(AB),. With (27) or (43) we find .

dlog B\ ., P
(6 logTz)f—_t - T 0—1 (45)

Coinciding curves loglg(log a)g

If the curves log %(log a) for various B coincide strictly, then —Jg is a func-

tion of @ only. From (41) we find that this is possible only if always ¢ =1
which means that all complexes must be mononuclear in B: A, B.

General equations for finding » and ¢

The limiting slope of the log g(log a)p curves, according to (39), gives

t+ mt if r<0; 4l if r>0. v
Spacing for b = B and b <{ B. In analogy with (3 6) we find from (13) and
(11) for negative r; for positive r, “min” and “max’ change place:

I ol N

Rmin—1
d log B) 7 (46)
Z)B N\
(6 log a/5 _ T Maad for b« B

Tomax—1
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If %min = 1, the lateral spacing between the ocurves disappears for b = B,
unless r = —+, in which case the curves are always parallel as discussed earlier.
If %pmex = o, the limiting spacing, like the limiting slope, will give ¢.

Curves for b~ (B—b ). Using a tentative value of s = —r/t, one may plot
b (B—b) as a function of log a to give a family of curves, either with B or b
constant. Since B is usually kept constant in each experimental series, the
curves with B constant are obtained immediately, whereas those with b constant
must be calculated by interpolation.

As one may derive from equations (13) and (8), b—(B—b) should be a
function of u only, if one has hit on the correct s value. One may use the
equations

(0 log B) a —tforb=B (@)
d log a/i—~p ¥ —ts=r for b« B

dlog b .

( 3log a)b"‘(a_b) = —¢ in the whole range (48)

One may then find out whether the values for ¢ and r obtained from (47)
and (48) with a tentative s are compatible with each other and with the s
assumed.

‘Curves for —Biz_—é With the aid of data (a, b, 4, B) one may plot—lj—‘:—b

as a function of log b, for a series of values 4,, 4, .. ... , and study the limiting
values and the spacing. The formulas are analogous to (14 to 36) except that
B and A are interchanged and the general formula of the complex A,(A,B),
is replaced by B,/ (ABy:),s, where ' = 8 = —r[t,t' = 1/t,and n' = r 4 nt. The

transformation of (35) and (36) gives, for example

(a log A) P v’ = —rft for a <4
B

dlog b/ 7 + Wt Nomin

n’mm-—l - r + Nmint—1

for a= A4 (49)

If the measurements have been made for a series of constant B values,
one must interpolate to get curves with constant 4.

Curve for a(B—b ). If one wants to test whether a certain set (r, t) is
consistent with the data, one may calculate and plot a~"(B—b) = u¢’(u) versus
t log a + log b = log u. All experimental points should then be on a single
curve, irrespective of B.

SUMMARY

A system is discussed in which two reactants A and B form a series of poly-

- nuclear complexes A,B,. The mathematical relationship between the total
concentrations (4, B) and the free concentrations (a, b) of the reactants is
given. A useful function called the complexity sum, S (equation 2) is introdu-

if only a, 4, land B are known, one may draw curves giving Z = A%a,

a8 a function of log a, with B constant for each curve. It is often observed that
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these curves, with good approximation, are all parallel with spacing 4 log a
proportional to 4 log B. This behavior leads to the following conclusions: 1)
If b is not negligible in comparison with B, all complexes present in appreciable
amounts must have the general formula B(A,B),; here ¢ is a constant, which is
obtained from the spacing of the curves (eq 24), whereas » may vary. 2) If
the curves are parallel and b negligible in the whole range, the general formula
must be 4,(A,B),, where ¢ and r are constants, and n variable; r is obtained
from the spacing.

If the Z(log a), curves coincide and b is negligible, all complexes must
be homonuclear, thus having the same g. If b is not negligible, they must more-
over all be mononuclear in B, of general formula A,B.

Equations are given for the case where all complexes can be written as
built up from a certain “core’” and a varying number of identical “links”
AB. All existing complexes might then be written as A,(A,B), or B,(AB),,
with r = —ts, but it is not necessary that all n values really occur. It is shown
how the values for r and ¢ can be found from measurements of either (@, 4, B)
or (a, b, 4, B) in a specific system.

If the curves giving log —b—(log a)g are parallel, the formula for the complexes

must be B(A,B), with ¢ constant, » variable. If, moreover, they coincide, then
only mononuclear complexes A,B are possible.

This paper is limited to finding the general formula for the complexes,
whilst the detailed investigation of the mechanism and the equilibrium
constants efc. will be discussed in subsequent papers.

The author is much indebted to Dr. Georg Lundgren and to Miss Sirkka Hietanen,
fil.mag., for valuable discussions.
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