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n recent years much work has been done on the extraction on metal ions (M)

from aqueous solutions with an organic solvent and a complex-forming
group (A). In mathematical calculations on such processes, the standard
approach has been to assume that the organic phase contains only the un-
charged complex MA,, and the aqueous phase only the uncomplexed metal
ion M. This assumption leads to the very simple equation (7) below.

Rydberg * found that this simple equation certainly did not hold true for
the thorium-acetylacetonate system studied very carefully by him (M = Th4+,
A = Aa~= (CH,COCHCOCH;)", N = 4). The experimental data could be
explained only by considering the formation in the aqueous phase of all the
complexes, MA, MA,, MA,, and MA,. The same conclusion has been reached
for a number of other systems studied by our team.

In the special system studied by Rydberg, the accuracy of the data allowed
the determination of five constants: the distribution constant 4, for MA,,
and the complexity products x,, x,, »3, and %, for the formation of all the
complexes MA,. In other cases, however, the data may be too few or of too
low accuracy to allow the determination of so many independent constants.

The present paper gives an approximation that has already proved useful
for describing a number of systems where the data are accurate enough to rule
out the simple equation (7) but not to determine all equilibrium constants
independently.
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864  DYRSSEN AND SILLEN

GENERAL EQUATIONS

Let M be the metal ion and A the (negatively charged) ligand. (We shall
for simplicity leave out the signs for charge.) We assume that a series of
mononuclear complexes MA, are formed. MA, is the uncharged complex
and MA; the saturated complex; e.g. with M = Th¢* and A = X", a uninegative
ion, MA, would be ThX,, and MAg might be ThX};~. Polynuclear complexes
and hydroxo complexes are neglected.

The equilibrium constants for the stepwise formation of the complexes
are

[MA,] |
k» = TMA, L JA] )

Here, as in the following, brackets denote the concentration in the aqueous
phase, unless the index ‘“‘org” is added to indicate the organic solvent phase.
We assume that, by the use of a constant ionic medium, the activity factors
are kept constant so that concentrations can be used instead of activities in
the law of mass action.

The complexity products x, are defined as

s
» = TMJAT

For reasons of symmetry we shall introduce

=kky...... k, @)

%o =1 | (2a)

The total concentration of M in the aqueous phase will be
S S S
Mot = M] + ; (MA,] = [M] (1 + ; x,[A]") = [M] g x[A]"  (3)

The organic phase, we assume, can dissolve M only in the form of the
uncharged complex MA,. The distribution constant of this complex is

_ [MAN]org
Ay = "Pia,) @

The quantity directly observed in the experiments is usually the (variable)
net distribution ratio. ‘

_ [M]total, org [MAN]org (5)
1= Ml aq . Ml
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The data are conveniently recorded by plotting log ¢ versus log [A]. It
follows from the equations (2), (3), (4), and (5):

. S
log ¢ = log Ay + log xy + N log [A] — log > x, [AT" (8)
0

The curve log ¢ versus log [A] will have 2 asymptotes, namely
[A]l- 0; log ¢ = log Ay + log xy + N log [A] (7)
[A]»> oo; log g = log Ay + log #y — log x; — (S—N) log [A] (8)

Equation (7) implies that in the aqueous phase M is present chiefly as
uncomplexed M. This equation has been used repeatedly in literature. How-
ever, in many systems studied by our team it has been of little use even as an
approximation.

Equation (8) implies that in the aqueous phase M exists practically only
in the form of the saturated complex MA, which may be either identical
with the uncharged MA, (S = N) or negative (S > N). From the slope of the
asymptote, (S—N) can thus be obtained.

TWO-PARAMETER EQUATIONS FOR A COMPLEX SYSTEM

We shall now suggest a two-parameter approximation for the formation
of the consecutive complexes MA,, MA,..... MA;. We assume that the
complex formation stops at MAg.

As one parameter we choose the quantity a defined by

x5 = 10%% log % = Sa 9)

It may be noted that J. Bjerrum’s 2 mean complexity constant % is equal to 10°
in the present paper.

The other parameter b should determine the ratios between subsequent
complexity constants. At the present state of our knowledge it seems hard to
predict these ratios for a new system from arguments on, say, statistical
factors and electrostatic forces. We shall make the simple approximation tha.t
the ra.tlo k,lk,,, is equal for each step. We thus have

10% — ﬂ2 log k, —log k,,, = 2b=2 log (10)
kn+1

From (2), (9), and (10) follows (noting that the log k, form an arithmetical
series) '
log k¥, =a + b8 + 1 — 2n) (11)

log %, = an + bn(S—n) (12)
Acta Chem. Scand. 7 (1953) No. 4
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We shall introduce for convenience a variable y defined by

y =[A]-10% log y =log [A] +a ‘ (13)
We find from (2), (10), (12), and (13)
[MA,] = %, [M][A]" = [M] y"g"(5~" (14)

To visualize the meaning of the parameters @ and b one may consider the
diagrams I or ITin Fig. 1. They are of the well-known type giving, as a function
of log [A], the percentage of the total M present as a certain complex. (See

the text of Fig. 1.)

A horizontal line at 50 9% will cut the boundaries of the field for MA,, approximately
at the points with —log [A] = log %, and log %, 1, provided b is positive and not too
small. At the first point, the amounts of MA,, and MA,_; are equal, in the second point
[MA, ;1] = [MA,]. The maximum fraction of MA, is obtained very nearly at the
intermediate point, —log [A] = 4 (log ky, + log kn1)-

The abscissa value log ¥ = 0, thus log [A] = —a, will be the mid-point
of the range of complex formation; thus, for an even S, the mid-point of the area
for MAh. The spacing between the curves at the 50 9, level will be approxi-
mately 2b, provided b is positive and not too small; in the curves in Fig. 1,
the parameter b is either 0.25 or 0.5, thus the pacing 0.5 or 1.0. With decreas-
ing b, the spacing decreases but of course never becomes negative, even
for negative b.

One might add that our equations are exact (and not only approximate) for the simple
cases § = 2 or 1. For § = 1, of course, only one parameter is necessary.

APPLICATION TO DISTRIBUTION EQUILIBRIA
Introducing (12), (13), and (14) into (6) we find

s
log g =1logdy + N log y + bN(S—N) — log zyﬂﬂ"(s—n) (15)
0

It follows from (13) and (15) that a change in @ or 4 will only mean a parallel
shift of the curve log ¢ versus log [A] whereas, as we shall see, a change in b
will affect the shape of the curve.

We shall consider in detail three cases I, II, and III, typical complex
formation curves for which have been given in Fig. 1.

In case I no negative complexes are formed; thus the saturated complex
MA; is identical with the uncharged MA, (S = N).

In case II, the saturated complex is negative (8 > N), and the uncharged
MA, is an intermediate, whose formation is not specially favored.
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Fig. 1. Distribution of total M in the aqueous phase over the complexes MA,, for varying
log [A]. The abscissa is log y = log [A] + a. On the ordinate axis, the distance 0— 100
represents the total amount of M present. If, for a given value of [A], a vertical line is drawn
at the corresponding log y, the segment of this line falling in a certain area, e.g. ““2” = MA,,
represents the fraction of the total amount of M present as that complex. In each diagram the
area for the extractible complex M Ay has been shaded. The diagrams have been calculated
with the approximation proposed in the text, that the ratio between consecutive complexity
constants is a constant (= 1020 ). They represent the cases I, 11, I11 considered in the text:
I. No negative complexes formed; the extractible complex is saturated (N = S ). In the
diagrams N =8 = 4, b = — o0, 0.25, or 0.5. '
II. The extractible complex 18 intermediate in the series and not expecially favored. In the
diagrams N = 4, S = 6, R = S—N = 2, b = 0.25 or 0.5.
III. The ranges of positive and negative complexes are separated by a broad range where
MAy predominates. In the diagram: N =4, S =6, R=8—N =2, b = 0.25
(for positive complexes ), by = 0.5 (for negative complexes ), and a = a, + 6, thus
log y, = log y—6.

In case III, as in case I, the complexes up to MA, are formed in a rather
narrow log y (= log [A] 4 a) range, with roughly equal spacing. If log y is
further increased, there is first a broad range where MA, predominates. At
still higher log y values, a group of negative complexes are formed,
MAy,,...MAg; the spacing here is not necessarily the same as for the lower
complexes. In case III the formation of positive and negative complexes can
be treated separately.
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I. No negative complexes formed

If the complex formation stops at the uncharged complex MA,, then
we have in equations (6)—(15) .

S=N (1.1)
and for instance (15) gives .
log ¢ =1log Ay + N log y — log % yprN . (1.2)
The asymptotes will be |
y—> 0; log g =1logdy + N log y = logdy + Na + N log [A] (1.3)
y— o0; log ¢ = log Ay (1.4)
In order to grasp how the three constants iy, a, and b (or B) affect the

experimental curves we shall consider for a moment the special case N = 4.
We find from (12)

log %, = a + 3b; log %, = 2a + 4b; log %3 = 3a + 3b; log x,= 4a (1.5)
and from (1.2)

log ¢ =log 4, + 4 log y—log (1 +yf*+y*p* + 4* p° + y*) (1.6)
or in full

log ¢ =1log 4, + 4a + 4 log [A]l—log [1 + [A]. 10°+3

[A]2. 10%+4 L [AP. 10%+% L [A]4. 10%] (1.7)

In Fig. 2 we have plotted log g—log 4, as a function of log y = a + log [A]
for various values of b, namely — oo, 0, 0.25, 0.50, 1, 1.50, and 2. All the curves
go together at high values for log y (practically only MA, present in both phases,
equation 1.4), and at low y (practically only M in the aqueous phase, equation
1.3). In an intermediate y range the curve family spreads out; the difference
between the curves is greatest at y = 1(log ¥ = 0). Similar families of curves
would be obtained for other values of N.

Of especial interest is the curve for b = — co(f = 0), which corresponds to
the assumption that the only species to be considered are M, MA, and A. This
curve has been drawn thicker than the others in Fig. 2. We shall denote the ¢
function so calculated by Q; it obeys he equation '

log @ =log iy + N log y — log(1 + y¥) (1.8)
Acta Chem. Scand. 7 (1953) No. 4
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Fig. 2. Variation of the net distribution ratio ¢ with [A] for case I with- N = 4, (case I11

with R = 4) and various values for the parameter b (b, ). Abscissa = logy = log [A] + a.

Ordinate: log g—log Ay; Ay = true distribution constant for MA,. The thick limiting curve,

which may be used as a templet, corresponds to b = — 0, § = 0 (no intermediate complexes

formed ). The circles give the points for log y = 0, log [A] = — a. The diagram to the

right (for the negative complexes in case I11) is the mirror image of the left diagram (for
positive complexes in case I).

It can easily be shown from equation (1.2) and (1.8) that the function
(log @—log ¢) has a maximum at y = 1. This maximum difference, which
we shall call A, can be used for determining the second parameter b. We
find from (1.2) and (1.8)

N
A = (log Q—log q),_, =log } > p*™~" (1.9)
. 0
For the N values between 1 and 6, equation (1.9) gives
N=1 A=0
N=2 A =log (1+1§)
N=3 A =log (14 f?)
N =4 A =log (1 + f° +§ 49
N=5 A =log (L+ p*+ 49
N=6 A =1log (1+ 5+ 5+ ) (1.92)

For each N, A may be calculated as a function of § or of b = log §.

Determination of a, b, and Ay. Suppose that measurements in a wide range
of [A] are available and that we have plotted log ¢ versus log [A]. To determine
a, b, and Ay one can prepare a templet giving, for this N value, log ¢ versus
log y according to (1.8). The templet should have a mark at logy = 0 (y = 1),
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thus at an ordinate —0.3 (¢/4, = }) units lower than the limiting value. This
templet is moved parallel with the experimental plot, log g versuslog [A],
until the two extreme parts of the experimental curve coincide with the
templet (cf. Fig. 5).

Then log 4y is, of course, the limiting value for log ¢, and a can be read as
—log [A] at the mark for log ¥ = 0 on the templet. Finally one measures the
distance A from the templet to the curve below the mark for log y = 0 and
finds 8 or b =log B from (1.9).

If b is greater than 0.5, and log ¢ values are not available over a very
wide range, it may be hard to locate accurately the asymptote for low [A]
by fitting a templet for b = — oo (see the lowest curves in Fig. 2). One may then
prepare a series of templets with the same N and varying b values, each with
a mark at log y = 0. The one or those that give the best fit can be used for
finding the asymptote and then b and @. One may also proceed by successive
approximations, preparing a number of templets around the best b value.

If b were greater than 0.75 or 1.0, the limiting slope N would not be even
approached in the measurable range of q. On the other hand, 4y and one or
two of the %, could be calculated with a good accuracy from the curve. For
instance, in the lowest curve in Fig. 2, the two almost rectilinear parts of
slopes 1 and 2, corresponding to the predominance of MA,_, and MA, ,
in the aqueous phase, could be used for calculating ky and ky_,. It is then a
matter of judgment whether one should use equations (11) and (12) to calculate
a and b, and to predict approximate values for the other equilibrium constants.
Systems with such a great spread in the complexity constants have not yet
been found by our team.

II. Negative complexes; formation of MAy not
especially favored

We shall assume that, besides the positive complexes MA . ... MA,_, and
the uncharged MA,, a series of negative complexes up to MAy . . can also be
formed, and that the area for MAy in the formation diagrams has the same
spacing as those for the surrounding complexes.

In equations (9)—(15) we then have

S=N+R ' (2.1)
Equation (15) will take the form
N+R

log ¢ = log 4y + N log y + bRN—log zo y* prNTR=—m (2.2)

Acta Chem. Scand. 7 (1953) No. 4
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~ log g - log Ay B-RN
0 -

Fig. 3. Variation of net distribution ratio q
with [A] for case II with (as in Fig. 1) N =4,
8 = 6, and b = 0.25 (broken ) or 0.5 (full-
drawn curve ). Abscissa: log y=a+ log [A].
Ordinate = log g—log Ay—bRN. Straight
lines: asymptotes with slope N (chiefly M
in aqueous phase) and slope — R (chiefly
MAg in aqueous phase ). Points: 1) inter--
section of asymptotes, 2) point on curve at
the abscissa of point 1, 3) mawimum of curve.
The line q = Ay has been marked out for

each curve. ReTI T2 1 0 +1 2 3 +4 logy

For some calculations it will prove useful to transform this equation by
using the new index j

j=N —n ' (2.3)

log ¢ = log Ay — log gy“iﬂf(N‘R"f) " (2.4)
The asymptotes of the 10; q curve will be

y- 0;log g =1logiy + bRN + N log y (2.5)

y— oo; log ¢ =logAy + bRN—R log y (2.6)

Fig. 3 shows curves for a system with N = 4, B = 2, and b = 0.25 or 0.50.

From experimental data on a system one could thus plot log ¢ versus log
[A] and find N and —R as the slopes of the asymptotes. To determine the
three remaining unknowns, a, b (8), and Ay, one may use the coordinates of
three points: ‘

1) The intersection point of the asymptotes at log y, = 0. We have here

log [A}, = —a (2.7)
log ¢, = log Ay + bEN (2.8)

2) The point on the curve immediately below point 1, thus with log y,
=0 has
N+R

+N
log ¢, = log Ay + bRN—log > "™+ =1log Ay —log > f*F7  (2.9)
0 —R

Acta Chem. Scand. 1-(1953) No. 4
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3) The maximum of the log ¢ curve will very nearly coincide with the point

log [Al, = —a + b(N—E) (2.10)
+N

log g3 =1log Ay — log >p" (2.11)
R

For g values larger than 2, only two or three terms in the sum need be
taken into account:

log g3 =logdy —log (1 +2p 1 4244 ... ... ) (2.11a) -

We would thus have five equations to calculate our three unknowns;
however, with actual experimental data one or two of the coordinates may be
8o inaccurately known as to be of little use.

In the special case N = R, points 2 and 3 coincide. The equations for case I
are obtained by setting R = 0, as could be expected.

III. Negative complexes formed; broad range for
uncharged complex

We shall now assume that the existence range of the uncharged complex
MAj, is broader than the others and so broad that one can treat the formation
of positive and negative complexes separately. Thus in one (lower) range of
[A], only the positive or uncharged complexes M, MA ..... MA, need be
considered: in another (higher) [A] range, only the uncharged or negative
complexes, MAy, MAy ,..... MA , r are present in appreciable concentrations.
The curve log g versus log [A] will be almost horizontal, at log ¢ = log 4y,
in the intermediate range where MA, predominates (Fig. 4).

For the “positive’ range one can proceed as for case I.

The formation of negative complexes by the addition of A to the core MA,
can be described by a set of complex constants k, and x, defined by

’ [MAN+7]
b= DA, A~ P @1
’ [MAN+I] ryt ’ xN-l—r
= e e = KKy o .. = 3'2
x, [MAN][A]' klkz k' %y ( )

We may then, in analogy with (9) and (10), assume that these equilibria
are described by two new parameters a, and b,, or §,.

log %z = Ra, ' (3.3)
log k,—log k,,, = 2b, = 2 log §, ‘ (3.4)

Acta Chem. Scand. 7 (1953) No. 4
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Fig. 4. Variation of net distribution ratio
q with [A] for case III with N=4, R=2,
b = 0.25, andb1=0.5;a=a1+6 as in
Fig. 1. Abscissa: log y=log [A]1+ a; (log
y = log y;+ 6). Ordinate: log q — log Ax.
To the left, positive complexes predominate
in the aqueous phase, to the right negative
complexes; each part of the curve can be -g

treated separately by the methods given for 1. “2-1 0.2 tg :g "_? 'g :? :g :g ::3 z‘

This gives, as above,
log », = a,r + b,r(R—r) : . (3.5)
log %y, = log xy + log x, = Na + a,r + b;r(R—r) (3.58)

Inserting the latter into (6), and neglecting the positive ions (n<N)
R R

log ¢ = log Ay — D %, [AY =log Ay — log > yi 1'% (3.6)
0 : [}

with the variable

tog 9y = log {41+ o, (3.7)
We may transform (3.6) as follows:
R
log ¢ = log Ay — Rlogy, — log z y;(R—') ﬂ;(R—q) —
0

R
log 4y — Rlogy; — log ; yiB (3.6a)

Equation (3.6) has the same form as (1.2) except that N is replaced by R and
log y by —log y,(= log y7'). The family of log ¢ curves (3.6) for negative
complexes with, say, B = 3 and various b values is then the mirror image of
the family of log ¢ curves (1.2) for positive complexes with N = 3.

We may thus use the same set of templets as for positive complexes after
half a turn around the vertical axis. As master templet (for a given R) we may
use the curve with g, = 0.

log Q@ = log Ay — log (1 + ¥) (3.8)
Acta Chem. Scand. 7 (1953) No. 4 . 8
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the shape of which is the mirror image of (1.8). The maximum difference
(log Q—log q) occurs at log y, =0 (y, = 1).

R
A = (log @Q—log gq), ., = log } 02 pE (3.9)

Equation (3.9) has the same form as (1.9), and can be used for finding 8, and b,.

APPLICATION TO THORIUM-ACETYLACETONATE COMPLEXES

It is interesting to apply this method (case I) to the Th-acetylacetone
(Th—HAa) system which has been carefully studied by Rydberg!. From
Fig. 5 we may see that the theoretical curve with @ = 6.66 and b = 0.45
fits the experimental values rather well. The constants calculated in this
way are given in Table 1 together with Rydberg’s values. It is seen that the
values of x,, k,, and k; are the same within reasonable limits of error: k,
and k,, however, deviate somewhat. The value of 4, is also somewhat different.
A careful study of Fig. 5 shows small divergences between the two-parameter
curve and the experimental values around —log [Aa] = 6 and 7.7. These
divergences have been accounted for by Rydberg using four parameters.

Table 1.
Values calculated with Values calculated by Rydberg
two parameters with four parameters

log %, 26.64 (= 4a) 26.86

log k&, 8.01 (= a + 3b) 7.85 + 0.35
log k, 7.11 (= a + b) 7.73 + 0.16
log kg 6.21 (=a —b) 6.28 + 0.08
log k, 5.31 (=a — 3b) 5.00 + 0.04
log 4, 2.43 2.52 + 0.04

In part VI of this series3, our equations are applied to the thorium-
oxinate and thorium-cupferrate complexes.

APPLICATION TO OTHER EXPERIMENTAL METHODS

The approximate two-parameter equations may also prove useful when
complex formation equilibria are studied by other experimental methods.
Starting from equation (14), it is not hard to derive the necessary equations
and devise methods for obtaining a and b.

For instance it is often possible, by means of an electrode of the corre-
sponding metal or amalgam, to measure either log [M] directly or, if the K,

Acta Chem. Scand. 1 (1953) No. 4
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sl s

«2}
Fig. 5. Data of Rydberg! treated by the ,;
approximation case I. The abscissa is here
— log [A] = — log y + a. Crosses = Ryd- 0
berg’s experimental data, full-drawn curve _y |
= values calculated with a = 6.66, b = 0.45.

Broken curve (master templet): calculated ~2[
with b = — o0, a = 6.66, thus neglecting 3t
all complexes in the aqueous phase besides N U
M and MA,. 2 3456 7 8 9-bglAd

is not accurately known, log [M] 4 constant. From analytical data, [M],,,
is known. Now it follows from (3) and (14).

S
log [M] — log [M],pey = — log Zo y* g™ (16)

The sum on the right of (16) is of the same form as the sums in (1.2) or
(3.6). Thus, from a plot of log [M]—1log [M],,. versus log [A], the parameters,
- a and b can be determined using the same templet and method as for cases I
and IIT; the templet should be turned as for the negative complexes in case ITI.

In this case it is immaterial whether A is charged or not. The charge of
MA; is also immaterial.

SUMMARY

As a reasonable approximation it has been assumed that the ratio of
adjacent complexity constants is the same throughout a series of complexes
of a metal ion M and a ligand A (eq. 10). The complex-formation equilibria
can be described by two parameters, called ¢ and b; sometimes it is convenient
to use f = 10°. The complexity products x, then follow eq. (12), and the
concentration of each complex MA, eq. (14); v is defined by eq. (13).

This approximation has proved helpful in systems where the data are not
accurate enough to allow a separate determination of all the consecutive
equilibrium constants. Equations are given and methods are devised for
application to distribution equilibria, where one complex (the uncharged)
MA, can be extracted with an organic solvent. It is shown that the equations
can also be applied to electrometric measurements of the concentration
of free M. :

For extraction, three cases are discussed in detail (see Fig. 1): (I) The
extractible complex MA, is identical with the saturated MA,, (II) MA, is

Acta Chem. Scand. 7 (1953) No. 4
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intermediate in the series, thus § > N, (III) the negative complexes (n > N)
are formed at a much higher [A] than the positive complexes (n < N); in a
broad intermediate range of [A], MA, predominates. For each case it is shown
how a diagram of log ¢ versus log [A] (¢ = net distribution ratio) can be used
for finding the parameters a and b, and the true distribution constant .

As an example (of case I), the methods are applied to Rydberg’s data !
on the thorium-acetylacetonate complexes and found to give rather good
agreement.

More applications are given in a paper by Dyrssen 3.
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