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Contribution to the Hydrodynamic-Osmotic Theory of
Sedimentation and Diffusion of an Incompressible
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OLE LAMM
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A theory for the sedimentation diffusion process of a binary system at
optional concentration is developed. The procedure and result is analogous
to the familiar treatment of the dilute solution in that the diffusion coeffi-
cient and the sedimentation coefficients here defined, are expressed in
terms of friction and of magnitudes determining the forces. The equations
deduced serve the purpose to vmprove the accuracy of the extrapolation
to zero concentration (which is in common use in ultracentrifuge work,
e. g. for the determination of sedimentation constants ), and to show the
nature of the approximations which are introduced when using the
“limiting” laws. The result may especially provide a base for experi-
mental work with the ultracentrifuge in non-dilute systems. — The
general formulation of the equilibrium condition, being thermodynamical
in nature, 18 familiar to everybody working in this field. However, using
the (symmetrical ) differential osmotic pressure factor, suggests a formu-
lation of the equilibrium condition which, in certain cases, is of advantage
over the traditional formulation using the (unsymmetrical) activity
concept.

Since the symmetric hydrodynamic treatment of pure diffusion gave a
simple result =7, it was clear that the same must be true for the sedimentation
diffusion process, the theory of which is especially of interest in connection
with ultracentrifugal measurements. Such a general theory is necessary for the
treatment of non dilute systems and for the understanding of the approxima-
tions made for instance in the case of dilute solutions. It is also beleived to be a
point of departure for a refined treatment. The variation of partial volumes in
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the cell during the process and the effects of ionic charges have not been con-
gidered. The validity of the theory is in general with good approximation
unaffected by such effects as dissociation of or association between the com-
ponents. The inner equilibrium of the solution is supposed to be rapidly adjus-
ted. With the limitations already indicated, we may put the question so:
What is revealed by measurements of the sedimentation diffusion process in
the general case of a two-component system, for the time dependent as well
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as in the equilibrium case?

I. Symbols.
M  molecular weight
n concentration in mole/cm3
m » » gfom3
N  mole fraction
Y  volume fraction
f activity coefficient on the mole fraction basis
V  partial specific volume
v » molar »
vz molar volume of a binary mixture
) density of the solution
C  linear velocity
z force direction
o angular velocity
D  diffusion coefficient
8 sedimentation coefficient
¢  frictional coefficient/cm?
] » » /mole of a component
B, thermodynamic factor
@Q,, differential osmotic factor.
II. Reference equations..
Y g Myt M,

¢ MN,V, + M.N,V,
y Mi_hom

0x Vg ox
3) _’1312=m= 11+ Novp
4) v dn; 4+ vdn, =0
5) vny + vgny =1
6) Vymy+ Vomg=1
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HYDRODYNAMICOSMOTIC THEORY 175

IIT. Theory. We consider a non-compressible two component liquid system
of mechanically normal properties. This is exposed to a centrifugal field in a
sector shaped cell, as in the ultracentrifuge. The sedimentation diffusion pro-
cess is convection-free because of the sector shape of the cell and of the control
of temperature.

The sum of the (pressure-) centrifugal force K;,/cm? and the diffusion force
Ki,/em® on component 1 equals the mutual friction force. The latter is the
difference of the component velocities in the direction of the force, C;—C,
cm/sec, multiplied by the frictional coefficient ¢,, of the solution/unit vo-
lume *. We obtain

Kjy + Kip = (01—0C,) ¢y, (1)
Kis = (1—Vyo)w?r - Myn, _ (2)
JnN, '
Jln In In
B,, is the well-known factor alnlo\tfll =1+ ailnﬁ =14 9_31an22 The force/

gram is tho gradient in “centrifuging potential” (cf. Tiselius®) - =
¢4

(1—V0)w?x and M,n, the number of grams/ecm3. Kj, equals the diffusion
force/mole, multiplied by n,**. Further, the linear velocity of the column in
bulk in the direction of force will be written

&’ = Cynw, + Cyngp, . (4)

* The (component) friction for diffusion and for sedimentation are not exactly equal, compare
Lamm 4P 8 for the special case of associated components.

** A more direct deduction of the total force is arrived at in the following way: The differential
of the chemical potential at constant temperature is

0ln, - 0P - [/}
dy=RT( al)dz—i—vl—dm; (vl=—’i>
ox /p i p

oz
centrifugal force/mole, M,w?z, in order to get the total force &, /mole of component one. Inserting
oP

oz

ou
Presupposing that du causes a force/mole of the magnitude — (—)T » we have to add to this the

= pw?r provides

ou Olna,
ky, = _0—:1: + M 0% = —RT 0%

+ M, (1—V o)’
Multiplying by n, gives the force/cm3, in agreement with equations (2) and (3).
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Eliminating C,; between (1) and (4) we obtain

. P (4
C, = (K3 + Kj,) p

+ 2 ’ (5)
12

For parallel flow we have ™ _ 9(Cymy)
ot oz

of cylindrical flow takes the form
a1 9(xCmy)

, an equation which in the case

(6)

at T o
Using reference equations 1, 2 and 3, the forces (2) and (3) are transformed to
Ky, = MM nn, (V,—V,)0x (7)
K}y = — RTB;, (n, + n,) a;;’ ! (8)
or )
Kfy = —RTByy(n, + nz)”%_:z% — — RTB, m %”;1 (8")

Equation (8') being written also with respect to component 2, by permuta-
tion of indices, it is easy to see that the sum of the diffusion forces is zero,
using the Gibbs-Duhems relation. Naturally, the same is true of the centri-
fugal-pressure force according to (7). Specifying the forces in (5) according to
(7) and (8"), and introducing C, in equation (6) gives

on,y 1 4 NNy on

—r [ _ct x " —

— [RT
ot x ox 12 ga(n, + ny) Iz
_ M Mnln 2V, — A
P12

This equation is multiplied by », and the corresponding equation for com-
ponent 2 by v, and these magnitudes are supposed to be independent of = *.
Addition of left and of right members of the resulting equations gives according

w2 — nxx'] 9)

2
to reference equations 4 and 5 0 =2 % (— xx’). Thus 2’ = kfz, which

means a constant flow “in bulk” of the solution in the sectorshaped cell.
As a flow of this kind is of no interest in our problem, we may put £ = 0 and
' = 0, this leading to a simplification of equation (9):

* This assumption has to be specially observed in the case of sedimentation of high molecular
substances, the concentration of which may become very high at the bottom of the cell.
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HYDRODYNAMIC-OSMOTIC THEORY 177

9n1 1 9 n1n2 3‘”1
S~ | prB, & T
at z Jx 2 @1a(ny + ny) x
M1M2n12'n,22(V2 -_ V1)1)2 w2x2] (10)
P12

This is a fundamental equation for the sedimentation diffusion at constant
partial volumes. In order to become independent of molecular weights (in the

second term on the right), we introduce gram concentrations and partial
specific volumes:

om, 1 4 NNy om,
—=— — | RTB;,, ————— T — —
ot x Ox I: 2 @ia(ng + my) O

_ mPm(V, — Vi)V, wzxz:l (11)
P12

Measuring the process, we determine coefficients of this equation. It has to be
compared with an equation

m, 1 9 om,
W e [P e — amtet] 42

0x

which is analogous to the second diffusion equation of Fick (with variable
diffusion coefficient D; and sedimentation coefficient s,), and which easily
follows as a generalization of a previously deduced equation ® (with constant
coefficients). It requires the same restriction as equation (11) regarding absence

of total (bulk) velocity. s,w% is the sedimentation velocity in cm/sec. The
comparison gives

nyn,
D,=D,=D,, = RTB;, ————— (13)
! : . 2 pia(ny + my)
which is the generalized Sutherland-Einstein relation, and
AV, —
8 = mym*(Vy — V)V, (14')
P12
and by permutation
8y = my®my(Vy — Vo))V (14")
P12 ' '
From these equations one obtains
8my Vi + 8gmaVy = 80,0y + 80y =8, ¥, + 8, ¥, = 0 (15)
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which gives the sedimentation coefficient of one component if that of the other
one is known. Y = mV = nv is the volume fraction. As s w? z represent sedi-
mentation velocities we see from (15) that the condition X Cnv = 0 (cf.
equation (4)) is valid for sedimentation and for diffusion independently.

As in a previous work ? we introduce a factor @, based upon the osmotic
presstires p, and p,

op, — 0p,

— Q1 = My on, —mn O_n; (16)

Unlike B,, this is independent of a choice of molecular weights. These magni-
tudes are related to one another by the equation

RTB,,  RT Olng,

= — = 17
@ (ny + np)viv, — MV, dlnm, (17
Introducing @,, in the expression (13) provides
D, = Q1omym,V,V, — Q.Y,Y, (18)
P12 P12
Eliminating the friction using equation (14”) gives
Dy (L — L
T (Vz Vl) (19)
Q. =
Sy

Equations (19) and (17) show the possibility of measuring activity, from the
sedimentation and diffusion processes, by integration.

We will now proceed to discuss the determination of molecular weights by
the sedimentation diffusion process. For this purpose ¢,, is eliminated between
(13) and (14")

RTB,,s,
D12(V1 - V2)Y1

m1M2 + m2M1 = (20)

If, now, component 2isdiluteand macromolecular, mM,>> m,M,
is an extremely advantageous approximation, so we may in this case write

RTB,,s,

= D1 = VT &)

M,

Further (1—V,/V,)Y, =1—V, o. Formula (21) represents a generalization
of Svedberg’s equation M, = RT's|D (1—7V p) to finite concentration and non-
ideal solution. As has been discussed at some length in an earlier paper ? B,,
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HYDRODYNAMICOSMOTIC THEORY 179

is not defined unless the molecular weights of the components are known or
values of these have been assumed. B,, being a correction factor in (21), the
practical use of this factor for molecular weight determinations should be of the
character of a successive approximation. The molecular theory is then intro-
duced in other ways, e.g. by using the vapour pressure of the solvent as an
activity measure.

Equation (20) may be transformed into the symmetrical formula

RTB,, [(—38;) + 8]

malle =D, 7 = 7 2)
This corresponds to writing (19)
1 1
Q12[(—81) + 8] = Dy, ("172 - —V_1> (23)

The equations (19), (20), (22) and (23) are of identical meaning. (19) and
(23) are independent of molecular weights. Thus, the other two do not express
anything regarding the molecular weights either, if not through the introduc-
tion of the molecular theory by special assumptions.

Analogous to (21) we obtain from (22):

_ RTB,, [(—s,) + 8] 94
= TDyu(1— Vy VDY, | (24)

For the ideal solution activity and mole fraction are, by definition, identical
8o we obtain B;, = 1 and

RT[(—s;) + 8,]
Dyy(1—7V, o)

M, = (25)
From this is seen that Svedberg’s molecular weight expression, which is the
fundamental limiting law for a dilute solution, may be regarded to hold for
finite concentrations if the rela tiv e sedimentation of the components is
introduced. °

IV. Solvation. The definition of components is always arbitrary in the
sence that these may be A, B or A(B),, B etc. In the latter case, AB, may
express the solvation of the substance A. In our equations, magnitudes such
as the sedimentation coefficients and the partial volumes and others depend
on how the components are defined. When applying Stokes’ law or any other
hydrodynamie friction formula, it may be advantageous to define a component
in the way indicated, and to use the relative sedimentation velocity
sw?x between the components AB, and B, where s = (—s,) + 8, = 8,/¥; =
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— ]Y,. Such a procedure bears a close connection to a theory of Enoksson 13
on the influence of solvent movement on the sedimentation. Enoksson’s
equation (4) is, from the practical point of view, identical with our expression
8, = — 8Y,, if AB, represents the solvated, macromolecular particle A and
8;0% is the directly observed sedimentation velocity of this relative to the cell.
— There is in Enoksson’s work evidence for the view that, for certain protein
solutions, s is independent of concentration (in the measured region). This
would mean that the solution is both thermodynamically and hydrodynami-
cally ideal, indicating a fixed degree of solvation.

V. Sedimentation equilibrium. Returning to equation (11), the sedimenta-
tion equilibrium is characterized byaTﬂ:l = 0 and the condi(:ion%;l =0 for
z = 0 (the axis of rotation). This gives, using equation (17), the equilibrium
condition

1 1
Olnm, _ (— — —) Y, o% (26)
0x

V, V,
This is suited for the determination of @,,, which is needed in connection with
diffusion work on binary mixtures, compare equation (18). The equation is
applicable without the use of molecular weights.
On the other side, we may ask if the present treatment gives something
new regarding the determination of molecular weights. Equations (26) and
(17) give, after permutation of indices '

dlna,
BT =50~
(1 = TV,Vy) (1 — myVy)e’

Q.

M, = (27)

This is a thermodynamic relation, the literature concerning which has been
especially completely given by Drucker 15 cf. Tiselius® and Pedersen 4.
According to (12) we may also use the equilibrium condition

dlnm,
Ox
and combine this with the approximate equation (21) in order to get

oin
RTB,, = 2

(I = Vo[V (1 — myV,) 0 ;

D, = 8,0% (28)

M, = 1—m,V, =Y, (29)

This expression is easy to obtain also from equation (27), putting a, = N,f,
and using m, M, D> m,M, (after derivation), just as we proceeded in deducing
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equation (21). — It is seen that we again are met with a factor ¥, which the
older treatments of dilute solutions (B;, = 1) have not observed. Although it
is here arrived at in a rather trivial way, the method of correct approximation
is not quite simple, as is seen from an earlier, unsuccessful attempt ©.

The sedimentation diffusion equilibrium is most conveniently measured by
the refractive index n of the mixture. Let n? and nJ be the refractive indices
of the pure components, then the following expressions, based on the Dale-
Gladstone formula, may prove to be sufficiently good approximations

n = nim, V] + ngm, V3 *
dmy (30)
oz
Index © denotes the pure component. Taking the concentration derivatives

from equation (26) and its analogue after permutation, we obtain the approx-
imate formula

om 1 1
Qu G = @ =) (= 7. ) mm VT3 @)
demonstrating the determination of @, by the ultracentrifuge. As the relative
change in concentration will be small over the centrifuge cell (for low mole-
cular solutions), this equation means that #n/jx is approximately proportional
-to . Such a sedimentation equilibrium is well measureable already in moderate
fields, at least in non-dilute solutions and if the components are not unfavour-
ably chosen. This is fortunate, as the methods of determining the activity or
osmotic properties of ordinary mixtures are quite limited. In addition to
equation (17) we quote the following formulation of @,

N, N,\ ilna
=RT (4 22y 1

“u (52 t {:1) dInN, (32).
which suggests how activity may be determined from equilibrium measure-
ments by integration of the functions @,,(N,) or @,,(m,). Concerning the
question of activity measurements by the ultracentrifuge, compare the articles
by K. O. Pedersen 14 and C. Drucker 15. The present theory has, on principles,
nothing to add to their thermodynamic treatment of the sedimentation equi-
librium.

VI. Isotopically labelled components. Although a selfsedimentation ana-
logous to selfdiffusion does not exist, it may be appropriate to give here the

* This formula gives good result also for a non ideal mixture such as ethanol — water.
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equations, valid for the process at optional concentrations if the only differ-
ence between the components are their molecular weights. For this purpose,
the formulas are expressed in molar quantities, as the molar volumes are iden-
tical, ¥, = v, = v. The friction per cm3 ¢,, is replaced by the ‘characteristic

1 1
friction sum” X'®,, according to the relation X @,y = ¢, (—n—- + n_) , the
1 2

reason being that this sum is independent of the concentration in the case
of selfdiffusion, according to (compare ref. 7 and 16)

RTB,,
Dy = —— (Byg = 1 for selfdiffusion) (33)
Zd,,
From equation (14') is obtained
(M, — My)Y,
8 = e . 34
1 To, const. Y, (34)

From this is seen that, unlike the diffusion coefficient, the sedimentation coef-
ficient is fundamentally concentration dependent.

For the sedimentation equilibrium the same assumptions give, as is seen
from equations (26) and (32) (@, = RTv)

dnY,
‘4

RT =M, — My)Y,0?z ; ¥, + Y, =1 ' (35)
which is directly integrable.

The fundamental equation (11) for the sedimentation diffusion process
cannot be integrated in the general case, as B;, and ¢;, are unknown functions
according to (13) and (14’). In the special case under consideration, the equa-
tion should be integra,ble as we may write

on ,
—t= —w— ™ I:Dmx — Kony(1 — ”1”)“’2]
Ky = (M) — My)o®/ 2P, (36)
where all the parameters (D;,, K, and v) are constants. (When permutating
indices 1 - 2, consider K’ - —K', D;; - D;, and n; + n, = 1/v).

For the corresponding process in a parallel- mded cell in a homogeneous
gravitational field g one obtains

on 9 on, ’
—a;— = l:D12 e Kom(l— nlv):l (37)
Kt; = (M, — M2)9/2¢12
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The boundary condition at the top and the bottom of the cell, expressing
their impermeability, coincides with the equilibrium condition as given by
equation (35) for the centrifugal field, and for the gravitational field as well
(0®r = g). This means that at the boundaries the concentration gradients
have values which make the diffusion force equal and opposite to the centri-
fugal — pressure force. Compare the paper of Archibald 2.

It is of interest to discuss our problems in the cases in which a complete
description is obtainable by mathematical analysis of the differential equations
(36) and (87). This must be reserved for later publication.

The properties of the differential equation for the sedimentation diffusion
process in the case of a dilut e solution were investigated by Faxén 10,
Oka 1%:18 and Archibald 19722,

VII. Conclusions. The general signification of measuring the three pro-
cesses of diffusion, sedimentation velocity, and sedimentation equilibrium may
be expressed in terms of the differential osmotic pressure factor @,, and the
friction coefficient/cm® ¢, of the two-component system according to the
following scheme:

1. Diffusion measurement gives Q,,/@;5, equation (18).
2. Sedimentation velocity measurement gives ¢,,, equation (14) *.
3. Sedimentation equilibrium method gives ¢,,, equation (26) (compare (31)).

The theory of these processes does not contain molecular weights of the
components in such a form that these can be experimentally determined un-
less approximations are introduced. Equation (27) may, at first sight, seem to
contradict this. The activity is, however, not defined unless the molecular
weight is known or, at least, an agreement has been made regarding this.

Reviewing the molecular weight relations which are used in ultracentrifugal
work, from the point of view of clarifying the approximations introduced,
shows that a factor of the magnitude of the volume fraction of the solvent may
be considered in order to increase the accuracy of the relations in question at
finite concentrations.

The symmetrical treatment of the two components and the resulting for-
mulae makes it natural to speak of sedimentation coefficients in analogy with
the diffusion coefficient. The former are concentration dependent also if the
components differ only by (ideal) isotopic labelling. A simple formula (15)
connects the sedimentation coefficients of ‘“solvent’” and ‘‘solute’.

The special case of components, only differing in their molecular weights,
was treated because it represents a rare instance in which the sedimentation

* Combining 1. and 2. measures @,, according to equation (19).
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diffusion process of a non-dilute system can be described by equations with
constant coefficients, with the result that these are completely integrable.
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