On the Crystal Structure of Tungsten Trioxide

GEORG ANDERSSON

Institute of Chemistry, University of Uppsala, Uppsala, Sweden

An investigation of the structure of tungsten trioxide was carried out in 1931 by Brackken¹, who described the structure as being triclinic (pseudomonoclinic) having two angles very nearly = 90° and the third showing a slight deviation from this value. He determined the positions of the four tungsten atoms in the unit cell with trial and error methods, and also indicated the probable positions of the twelve oxygen atoms. In fact, this structure corresponds to a monoclinic or orthorhombic symmetry as was also pointed out in the Strukturbericht². However, later reports on this structure vary. When Magnéli³ interpreted the powder photographs of tungsten trioxide, he did not find any deviation from a monoclinic quadratic form, whereas Wyart and Foëx ⁴ by measuring single crystals optically came to the conclusion that the symmetry was triclinic. The cell dimensions given by the above mentioned authors are shown in Table 2.

These inconsistencies have made a renewed study of the symmetry of tungsten trioxide desirable. Because work on other tungsten oxides as well as on polytungstates was being carried out in this institute, it also seemed valuable to determine the tungsten positions with Fourier methods.

EXPERIMENTAL

Tungsten trioxide was investigated both with the powder and with the single crystal method. Powder photographs were taken with a Guinier focusing camera using monochromatic Cu-Ka-radiation. Several preparations of various origins, which had been recrystallized at about 850°C (Merck puriss., Baker analysed, and British Drug Houses) were investigated. They all gave identical powder patterns.

For the single crystal method, minute crystals were obtained from trioxide melts. Rotation and Weissenberg photographs were taken with Cu-K-radiation and with the axes [100] (layer lines 0-4) and [001] (layer lines 0-2) as rotation axes. Multiple film technique was used and the intensities were estimated visually against a scale consisting

of reflections of known relative intensities. The values of the Θ factors were calculated with Lu's curves ⁵ and the Fourier calculations were facilitated with Hägg-Laurent's calculating machine ⁶.

SYMMETRY AND UNIT CELL DIMENSIONS

In Weissenberg photographs no deviation from orthorhombic symmetry could be observed. In order to determine the symmetry, the powder photographs were analyzed in detail. The values of the unit cell dimensions given by Magnéli corresponding to monoclinic symmetry, and those given by Wyart and Foëx corresponding to triclinic symmetry, were tested. It was found that all lines in the powder photographs could be indexed by means of a monoclinic quadratic form (Cf. Table 1).

In Table 2 the values of the unit cell dimensions obtained in the present investigation are compared with those given by earlier investigators.

The Laue symmetry of WO₃ must clearly be 2/m. Reflections (h0l) were all absent when h=2n+1, and reflections (0k0) were only observed when k=2n; these absences are characteristic of the space-group $C_{2k}^5-P_{21}/a$. In fact, Braekken's co-ordinates correspond to this symmetry.

ATOMIC POSITIONS

A calculation of the structure factors, based on Braekken's co-ordinates for the tungsten positions, showed good agreement with the observed data. The signs of the F values obtained in this connection were used together with the intensities now obtained from the Weissenberg photographs for a calculation of the electron density function. The x and y parameters were determined from the projection of the electron density along the c-axis, and the z parameter and a control of the y parameter were obtained from the section ϱ ($\frac{1}{4}$, y, z). The data thus obtained completely confirm Braekken's values, as can be seen from Table 3.

The tungsten atoms are thus in principle arranged as in the ReO_3 structure, but their distances show certain variations, viz.

3.705 Å approximately in the direction of the a-axis

3.79 Å » » » » » b- »

3.835 Å in the direction of the c-axis

The positions of the oxygen atoms could not be determined from X-ray data. If the symmetry of the arrangement of the oxygen atoms is the same as that deduced for the tungsten atoms, 4 oxygen atoms must occupy the parameter-free positions 2 (a) and 2 (c). Concerning the other oxygen atoms, no

Table 1. Powder photograph data for tungsten trioxide Cu-Ka-radiation.

		 !.	n ² 0			•	20
h k l	I_{rel}	obs	calc	h k l	I_{rel}	obs	1 ² 0 calc
001	100	.0405	.0404	421	35	.2644	.2645
020	95	.0420	.0421	$13\overline{2}$	25	.2663	.2663
200	100	.0448	.0448	132			(.2690)
011	5	.0511	.0510	312}	60	.2691	$\langle .2691 \rangle$
120	50	.0532	.0533	340 ⁾			$^{1}.2692$
111	50	.0615	.0615	312	35	.2771	.2771
111	50	.0628	.0628	$23\overline{2}$	10	.2986	.2986
021	75	.0825	.0825	$\mathbf{32\overline{2}}$	5	.3008	.3006
$20\overline{1}$	60	.0839	.0839	051}	20	.3037	(.3035
201)	90	.0868	(.0866	232)	20	. 505 /	1.3039
220)	90	.0000	1.0869	341	25	.3077	.3076
$12\overline{1}$	35	.0930	.0930	341	25	.3114	.3116
121	40	.0944	.0944	520	10	.3222	.3222
$22\overline{1}$	50	.1260	.1260	51 T	5	.3277	.3278
221	60	.1286	.1287	042	25	.3299	.3300
031	10	.1351	.1351	511)	25	.3356	$\{.3345$
320	40	.1430	.1429	402)			1.3356
13 <u>T</u>	30	.1456	.1457	$14\overline{2}$	10	.3399	.3399
131	25	.1471	.1470	142	10	.3427	.3426
311	35	.1499	.1498	402	45	.3475	{.3464
311	30	.1538	.1538	440/			1.3476
002	50	.1617	.1617	$33\overline{2}$	20	.3534	.3532
040	50	.1683	.1683	332	15	.3609	.3613
400)	75	.1794	{.1793	242	15	.3720	.3722
140)			1.1796	242)	30	.3777	3776
$\frac{11\overline{2}}{112}$	40	.1822	.1821	42 <u>2</u>) 11 3	90		1.3777
20 <u>2</u>)	50	.1848	.1848	44 <u>1</u>	20 20	.3833	.3836
022	60	.2038	$\left\{ egin{array}{l} .2038 \ .2038 \end{array} ight.$	113)	20	.3851	.3854 (.3876
041)			(.2088	422	20	.3875	3884
202	55	.2088	$\{.2088 \\ .2092$	160)			(.3900
240	50	.2132	.2132	441	40	.3898	3907
401	40	.2172	.2171	600	20	.4033	.4034
14T	25	.2193	.2193	53 <u>1</u>	5	.4119	.4119
141	20	.2100	(.2207	531	5	.4187	.4186
420}	65	.2214	2214	260)	·		(.4236
401	00		.2224	052	10	.4242	.4247
33 <u>T</u>	10	.2341	.2340	$34\overline{2}$	5	.4266	.4269
331	10	.2380	.2380	161	20	.4293	.4297
$22\overline{2}$	30	.2460	.2459	432)	•		(.4304
222)		(.2513	(.2513	161)	25	.4306	4311
$24\overline{1}$	40	.2522	.2523	$15\overline{2}$)		46.45	J.434 6
241	25	.2548	.2549	342)	10	.4346	1.4349
$42\overline{1}$	45	.2592	.2591	152	5	.4369	.4373

Table 1. continued.

h k l	I_{rel}	$\sin^2\!\Theta$			$h \ k \ l$	т	$\sin^2\!\Theta$	
		obs	calc	٠	n K t	I_{rel}	obs	calc
$60\overline{1}$	15	.4397	.4398		360	20	.4790	.4796
432	5	.4412	.4411		451			(.4801
620	30	.4453	.4455		313}	30	.4809	$\{.4812$
601)	25	4400	(.4479		$62\overline{1}^{\prime}$			(.4819
5 4 0)	25	.4483	1.4485		451)	_	4050	1.4854
033	20	.4587	.4585		54Ī)	5	.4 858	1.4856
$25\overline{2})$	10	4057	f.4669		621	10	.4895	.4900
133∫	10	.4671	1.4677		541	15	.4918	.4923
$31\overline{3}$	20	.4689	.4692		630)	10	4000	J.4981
133)	25		J.4718		233)	10	.4983	1.4993
252	25	.4714	1.4722					

definite conclusions can be drawn. They may be situated half way between neighbouring tungsten atoms in accordance with Braekken's assumption. In this connection it may be mentioned that, in molybdenum oxides where MoO_6 octahedra exist which do not share edges with adjacent octahedra, the former are rather distorted. This has been demonstrated in the oxides Mo_8O_{23} and Mo_9O_{26} ⁸.

Table 2. Unit cell dimensions.

Authors	аÅ	<i>b</i> Å	c Å	а	β	γ
Braekken ¹	7.28	7.48	3.82	90°	∼90°	90°
Magnéli ³	7.29	7.54	3.85	90°	90.9°	90°
Ueda and Ichinokawa 7	7.278	7.460	3.838	90°	∼ 90°	90°
Wyart and Foëx 4	7.21	7.44	3.80	90.25°	90.02°	90.50°
The present investigation	7.285	7.517	3.835	90°	90.90°	90°

Table 3. Atomic parameters for tungsten.

	4W in 4 (e)			
Authors	x	\boldsymbol{y}	z	
Braekken ¹	0.250	0.031	0.063	
The present investigation	0.250	0.032	0.062	

SUMMARY

The crystal structure of WO_3 was investigated. The symmetry has been found to be monoclinic (pseudoorthorhombic) and belonging to the space-

group $C_{2k}^5 - P2_1/a$. The positions of the tungsten atoms given by Brackken have been verified with Fourier methods.

The author wishes to thank Professor G. Hägg and Dr. A. Magnéli for their kind interest in this investigation. A grant from the Swedish Natural Science Research Council is gratefully acknowledged.

REFERENCES

- 1. Braekken, H. Z. Krist. 78 (1931) 484.
- 2. Z. Krist. Strukturbericht II, 1928-1932, 299.
- 3. Magnéli, A. Acta Chem. Scand. 3 (1949) 88.
- 4. Wyart, J., and Foëx, M. Compt. rend. 26 (1951) 2459.
- 5. Lu, C. S. Rev. Sci. Instr. 14 (1943) 331.
- 6. Hägg, G., and Laurent, T. J. Sci. Instr. 23 (1946) 155.
- 7. Ueda, R., and Ichinokawa, T. Phys. Rev. 80 (1950) 1106.
- 8. Magnéli, A. Acta Chem. Scand. 2 (1948) 501.

Received June 25, 1952.