Studies on Carbamates

IX. The Carbamate of Allylamine

ARNE JENSEN, RUTH CHRISTENSEN and CARL FAURHOLT

The Royal Danish School of Pharmacy, Copenhagen, Denmark

The equilibrium conditions and reaction mechanism of the formation and decomposition in aqueous medium of the carbamate formed by allylamine have been studied. As the experimental and theoretical conditions are analogous to those of the previous carbamates, we find that, on the whole, it is sufficient here to state the experimental data and the calculated constants, referring for further information to an earlier paper ¹.

The allylamine (Eastman Kodak Company) used was distilled through a platinum wiregauze column². The allylamine thus obtained boiled at 53.3° — 53.5° C (748 mm Hg) and had a $n_{\rm D}^{22.2^{\circ}}=1.4193$ according to the value of Brühl³. A molecular weight of 56.8 and 57.1 was obtained by a bromometric titration and an acidimetric titration, respectively; the theoretical value is 57.09. The above mentioned boiling point is corrected for calibration errors; stem correction has been done.

The carbamate of allylamine, $\mathrm{CH_2}:\mathrm{CH}\cdot\mathrm{CH_2}\cdot\mathrm{NH}\cdot\mathrm{COONH_3}\cdot\mathrm{CH_2}\cdot\mathrm{CH}:\mathrm{CH_2}$, in solid form was prepared by treating a solution containing 10 % amine in anhydrous ether with dry carbon dioxide. The precipitate which

Initial solution		Absorbed			Final solution		Mean		k _{CO₂·Am}	
$c_{ m NaOH}$	$c_{ m Am}$	$CO_2 \frac{\text{mol}}{\text{litre}}$	carba- mate	$c_{ m NaOH}$	$c_{ m Am}$	$c_{ m NaOH}$	$c_{ m Am}$		Mean	
$0.20 \\ 0.10 \\ 0.20$	0.10 0.10 0.10	0.0179 0.0193 0.0200	37 54 35	0.17 0.07 0.17	0.09 0.09 0.09	0.19 0.09 0.18	0.10 0.09 0.10	$10^{5.07} \\ 10^{5.07} \\ 10^{5.03}$	105.06	
0.20	0.20	0.0191	54	0.17	0.19	0.19	0.19	105.08		

Table 1. Carbon dioxide in allylamine + NaOH. 18°.

Initial solution				%	Equilibrium				$K_{E{ m q}}$	
$c_{ m Am}$	$c_{ m AmH} +$	CO ₃	$c_{ m carba-}$	carba- mate	$c_{ m Am}$	$c_{ m AmH}+$	c _{carba-} mate	$c_{ ext{HCO}\widehat{3}}$		Mean
0.05	0.05	0.02		68 ¹	0.054	0.072		0.0041		
$\begin{array}{c} 0.02 \\ 0.04 \end{array}$	0.05	$\begin{array}{c} 0.01 \\ 0.02 \end{array}$		58 ² 66 ³	$0.024 \\ 0.044$	$0.061 \\ 0.082$	$0.0058 \\ 0.0132$	0.0034 0.0049	$10^{-1.86} \\ 10^{-1.78}$	10-1.81
0.04	0.06		0.02	714	0.044	0.080	0.0121	0.0044	10-1.80	

Table 2. The solution of carbonate-carbamate in equilibrium. 18°.

Table 3. Velocity constants for the process "carbamate \rightleftharpoons carbonate". 18°. $pa_H approx. 9.8.$

In	itial solution	1		%			
	$c_{\mathbf{AmH}}+$	$c_{\mathbf{Am}}$	Min.	carbamate	k _{amate}	$+ k_{ m onate}$	
	ļ		40	11.7		0.00203	
			85 120	$21.0 \\ 27.6$		0.00187 0.00187	
0.020 M	0.05	0.05	260	45.2		0.00187	
$(AmH)_2CO_3$	0.05	0.03	200 ∞	68.4	Mean:	0.00191	
				00.1	$k_{ m amate}$: $k_{ m onate}$:		
$0.010~M$ ${ m (AmH)_2CO_3}$	0.05	0.02	40 85 120 160 242 ∞	14.8 25.9 33.5 38.9 48.0 57.7	$egin{aligned} \mathbf{Mean:} & & & \\ k_{\mathbf{amate:}} & & & & \\ k_{\mathbf{onate:}} & & & & \end{aligned}$	0.00322 0.00304 0.00314 0.00303 0.00320 0.00313 0.0013	
$0.020~M$ ${ m (AmH)_2CO_3}$	0.06	0.04	40 80 120 166 270 ∞	11.0 21.2 29.1 34.1 49.0 66.0	Mean: $k_{ m amate}$: $k_{ m onate}$:	0.00197 0.00211 0.00210 0.00190 0.00217 0.00205 0.0007 0.0014	

Table 4. Velocity constants for the process "carbamate \rightarrow carbonate". 18°. $pa_H = approx.$ 13.

Initial	solution	ļ		%	$k_{ m amate}$		
c _{carbamate}	$c_{ m NaOH}$	$c_{ m Am}$	Min.	carbamate left			
			0	100			
0.020			154	94.9		0.000147	
(CO ₂			407	87.1		0.000148	
in solution	0.08	0.08	1428	62.5		0.000143	
of amine)			4293	23.1		0.000148	
•			8623	4.6		0.000155	
			∞	(0)	Mean:	0.00015	
			0	100			
			221	93.3		0.000138	
			420	86.6		0.000149	
0.019			1400	61.5		0.000151	
(preparation	0.08	0.08	3065	33.1		0.000157	
of carbamate)			5960	12.2		0.000153	
,		'	8630	4.9		0.000152	
			∞	(0)	Mean:	0.00015	
			0	100			
			231	91.6		0.000166	
			422	84.8		0.000170	
0.022			1573 ·	56.0		0.000160	
(preparation	0.08	0.08	3094	32.2		0.000159	
of carbamate)			5838	12.6		0.000154	
, i			8948	4.0		0.000156	
			∞	(0)	Mean:	0.00016	

Table 5. Velocity constants, experimental and calculated.

	Ini	tial solution	k _{an}	ıate	$k_{ m onate}$			
c _{(AmH)₂CO₅}	c _{carba} .	$c_{ m AmH}+$	$c_{ m Am}$	$c_{ m NaOH}$	exp.	calc.	exp.	calc.
0.02		0.05	0.05		0.00060	0.00067	0.0013	0.0013
0.01		0.05	0.02		0.0013	0.0018	0.0017	0.0018
0.02		0.06	0.04		0.00070	0.00087	0.0014	0.0015
	0.02		0.08	0.08	0.00015	0.00021	1	
	0.02		0.08	0.08	0.00015	0.00021		
	0.02		0.08	0.08	0.00016	0.00021		

appeared was separated by filtration and dried over concentrated sulphuric acid. We found 72.2 % allylamine (theoretically 72.18 %) by titration with 0.1 N HCl of the carbamate. We found 27.6 % (theoretically 27.82 %) by determination of carbon dioxide in the carbamate.

The basic dissociation constant $K_{\rm Am}$ at 18° C of allylamine was fixed at $10^{-4.38}$, the value of which is calculated on the basis of the values at 0°, 25° and 40° C of Hantzsch and Sebaldt ⁴. It should be noted that the value at 25° C of Hantzsch and Sebaldt agrees well with the corrected value of Bredig ⁵.

As the experiments are carried out analogously to those of the *n*-propylamine, and as the addition and equilibrium constants of the two amines have approximately the same quantitative values, it would seem, that the double bond in allylamine has no influence on the conditions of addition and equilibrium.

SUMMARY

The velocity constant of the reaction " $\mathrm{CH_2}:\mathrm{CH}\cdot\mathrm{CH_2NH_2}+\mathrm{CO_2}=\mathrm{CH_2}\cdot\mathrm{CH}\cdot\mathrm{CH_2NHCOOH}$ " and the equilibrium constant for the reaction " $\mathrm{CH_2}:\mathrm{CH}\cdot\mathrm{CH_2NHCOO^-}+\mathrm{H_2O}=\mathrm{HCO_3^-}+\mathrm{CH_2}:\mathrm{CH}\cdot\mathrm{CH_2NH_2}$ " have been determined. The velocity of the decomposition of $\mathrm{CH_2}:\mathrm{CH}\cdot\mathrm{CH_2NHCOO^-}$ in basic medium was investigated and may be explained in assuming that the decomposition is a two-stage reaction, viz.

carbamate = allyl amine + carbon dioxide carbon dioxide = carbonate

REFERENCES

- 1. Jensen, A., Jensen, M. B., and Faurholt, C. Acta Chem. Scand. 6 (1952) 1073.
- 2. Klit, A. Fraktioneret Destillation. (1943). Dissertation, Copenhagen.
- 3. Brühl, J. W. Z. physik. Chem. 16 (1895) 193.
- 4. Hantzsch, A., und Sebaldt, F. Z. physik. Chem. 30 (1899) 297.
- 5. Bredig, G. Z. physik. Chem. 13 (1894) 305.

Received June 30, 1952.