obtained a 56 % yield of their product (b. $p_{.760} = 111^{\circ} - 112^{\circ}$, $n_{D}^{20} = 1.4369$).

- Gilman, H., and Calloway, N. O. J. Am. Chem. Soc. 55 (1933) 4197.
- Gilman, H., McCorckle, M., and Calloway, N. O. J. Am. Chem. Soc. 56 (1934) 745.
- Gilman, H., Calloway, N. O., and Burtner, R. R. J. Am. Chem. Soc. 57 (1935) 906.
- Shephard, A. F., Winslow, N. R., and Johnson, J. R. J. Am. Chem. Soc. 52 (1930) 2083.

Received October 30, 1951.

Melting Points of p-Nitrobenzyl Esters of Aryl Substituted Propionic Acids

GUST.-AD: HOLMBERG

Institute of Organic Chemistry, Abo Akademi, Abo, Finland

In connection with other work in progress in this laboratory, a convenient method for identifying carboxylic acids was required. The melting points of the p-nitrobenzyl esters prepared according to the

method originally proposed by Reid¹ was found to be suitable for this purpose. The method was first applied to acids with similar constitutions and melting points that had been prepared in this laboratory². As the melting points of these p-nitrobenzyl esters may have a general interest in connection with the appraisement of Reid's method, they are reproduced in Table 1.

The melting points of the p-nitrobenzyl esters are rather evenly spread over a temperature range of 55° and almost all differences between the melting points of the derivatives are sufficiently large for identifaction purposes.

The esters were prepared according to Wild 3 .

- Reid, E. E. J. Am. Chem. Soc. 39 (1917) 124; Lyman, J. A. and Reid, E. E. ibid. 39 (1917) 701; Lyons, E. and Reid, E. E. ibid. 39 (1917) 1727; Bliche, F. F. and Smith, F. D. ibid. 51 (1929) 1947.
- Holmberg, G. A. Acta Acad. Aboensis, Math. et Phys. XVI (1949) no. 6; Acta Acad. Aboensis, Math. et Phys. XVII (1950) no. 1.
- Wild, F. Characterisation of Organic Compounds (1948) 144. Cambridge, Cambridge University Press.

Received April 1, 1952.

Table 1.

Propionic acid		$p ext{-Nitrobenzyl}$ ester		
Substituents	M.p. ° C	M. p. ° C	Calc. N	Found N
β, β, β ,-Triphenyl-	177-178	133—134	3,20	3,26
β, β -Diphenyl- β -o-tolyl-	174.5 - 175.5	110-111	3,10	3.09
β , β -Diphenyl- β - m -tolyl-	118-119	106 - 107	3.10	3.11
β , β -Diphenyl- β - p -tolyl-	195-196	120 - 121	3.10	3.12
β , β -Diphenyl- β -o-anisyl-	169-170	115 - 116	3.00	2.99
β , β -Diphenyl- β - p -anisyl-	155-156	83 - 84	3.00	2.99
$\beta \beta$ -Diphenyl-	154-155	90 - 91	3.88	3.87
β -Phenyl- β -o-tolyl-	131-132	83 - 84	3.73	3.68
β -Phenyl- β -p-tolyl-	145-146	78 - 79	3.73	3.77
β -Phenyl- β -p-anisyl-	124-125	87 - 88	3.58	3.48
β,β -Di-p-anisyl-	139-141	93 - 94	3.32	3.29
β -Phenyl- β - p -biphenyl-	176-177	110 - 111	3.20	3.27
β -Phenyl- β -naphthyl-1-	149-150	104 - 105	3.40	3.30