Preparation of 2,5-Dimethoxy-2,5-dihydrofurfuryl Methyl Ether and 2,5-Dimethoxytetrahydrofurfuryl Methyl Ether

NIELS CLAUSON-KAAS

Centrallaboratoriet, Sadolin & Holmblad A/S, Copenhagen, Denmark

A new electrolytic method for the methoxylation of furans has recently been described $^{1-3}$. This method has now been used to methoxylate furfuryl methyl ether to dimethoxydihydrofurfuryl methyl ether, which is a new compound. Catalytic hydrogenation of dimethoxydihydrofurfuryl methyl ether gave the expected dimethoxytetrahydrofurfuryl methyl ether, which also is new. Dimethoxytetrahydrofurfuryl methyl ether gave, with dinitrophenylhydrazine in methanol, a bis-dinitrophenylhydrazone with the formula $C_{17}H_{15}O_8N_8(OCH_3)$. This proves that the methoxy groups in both dimethoxy compounds are in the 2,5-positions (formulas I and II) $^{C_f,\ 3}$.

The bis-dinitrophenylhydrazone (structure III) is a derivative of δ -methoxylevulinaldehyde. Pummerer et al.^{4,5} report having prepared the dimethyl acetal of δ -methoxylevulinaldehyde by acid methanolysis of furfuryl alcohol or furfuryl methyl ether. They obtained from their product a bis-dinitro-

phenylhydrazone with the formula $C_{18}H_{18}O_9N_8$. The bis-dinitrophenylhydrazone of Pummerer et~al. is reported to melt at 192° and to be easily soluble in benzene, while the bis-dinitrophenylhydrazone from dimethoxytetrahydrofurfuryl methyl ether melts at 248—249° and is almost insoluble in benzene. The two hydrazones are thus apparently not identical. Since the hydrazone from dimethoxytetrahydrofurfuryl methyl ether is prepared in high yield by a series of well-known reactions it is almost certainly a bis-dinitrophenyl-hydrazone of δ -methoxylevulinaldehyde. The structure proposed by Pummerer et~al. for their hydrazone should therefore not be accepted without further experimental evidence.

EXPERIMENTAL

Microanalyses by Franz Limborg and Kirsten Glens

2,5-Dimethoxy-2,5-dihydrofurfuryl methyl ether (1). 5.00 g of ammonium bromide (0.051 mole) is dissolved in 270 ml of methanol and 39.2 g of furfuryl methyl ether (0.35 mole) (note 1) and the mixture electrolyzed with the set-up used previously for the electrolytic methoxylation of furan 1.

Hours	Current (ampere)	Potential across the cell during electrolysis (volt)	Temperature in the cell	Ampere hours (per cent of theoretical amount)
0.5	2.9	4.5	14°	1.6 (8 %)
2.2	2.8	4.5	15°	6.5 (35 %)
6.3	2.3	4.8	_ 15°	17.4 (93 %)
7.0	1.9	4.9	— 15°	18.8 (100 %)

After electrolysis the liquid in the cell is colourless in the upper part of the cell and slightly yellow from unreacted bromine near the bottom. The liquid is poured into a solution of sodium methoxide (1.20 g of sodium (0.052 mole) in 15 ml of methanol) and the methanol and the ammonia evaporated in vacuum from a water-bath. The residue is filtered and the precipitate of sodium bromide washed with a little ether. The filtrate is distilled through a 5 cm column packed with glass helices (see p. 558).

All fractions show a negative Beilstein test for halogens. Yield (fractions 2-4) 50.8 g of dimethoxydihydrofurfuryl methyl ether = 83 %; current efficiency 83 %.

Fraction 3 was further analyzed for carbon and hydrogen.

$${
m C_5H_5O(OCH_3)_3}$$
 (174.2) Cale. C 55.2 H 8.1 Found » 55.2 » 8.2

Fra	etion (g)	B. p. ₁₀	n25 D	OCH ₃ Calc. 53.5 %
1	(0.4)	67 – 84°		
2	(37.8)	84-85°	1.4384	53.3
3	(8.0)	85°	1.4383	53.6
4	(5.0)	85°	1.4384	54.1
res	idue (2)			

2,5-Dimethoxytetrahydrofurfuryl methyl ether (II). 30.0 g of dimethoxydihydrofurfuryl methyl ether and 50 ml of anhydrous methanol are shaken with 4.0 g of Raney nickel under 100 atmospheres of hydrogen for 4 hours. After filtration the methanol is evaporated in vacuum and the residue distilled further in vacuum.

Fraction (g)	B. p. ₁₂	$n_{ m D}^{25}$	OCH ₃ Calc. 52.8 %
1 (3)	< 42°		
2 (7.8)	80 – 82°	1.4285	53.2
3 (7.2)	81-82°	1.4283	52.3
4 (9.0)	81-82°	1.4289	52.3
5 (4.2)	82-83°	1.4285	52.7
no residue			

Yield (fractions 2-5) 28.2 g of dimethoxytetrahydrofurfuryl methyl ether = 93 %. Fraction 4 was further analyzed for carbon and hydrogen.

$$C_5H_7O(OCH_3)_3$$
 (176.2) Calc. C 54.5 H 9.2
Found » 54.5 » 9.2

Bis-dinitrophenylhydrazone of δ -methoxylevulinaldehyde (III). 176 mg of dimethoxytetrahydrofurfuryl methyl ether in 5 ml of anhydrous methanol was added to a solution of 495 mg of dinitrophenylhydrazine in 10 ml of methanol and 1 ml of concentrated sulfuric acid. The yellow hydrazone, which precipitated immediately, was filtered off after 1 hour, washed thoroughly with methanol and dried (sulfuric acid, 0.1 mm, 80°,

1 hour). Yield 477 mg of bis-dinitrophenylhydrazone = 97 %; m. p. (Hershberg apparatus, corr.) $227-229^{\circ}$ (destruction).

$$C_{17}H_{15}O_8N_8(OCH_3)$$
 (490.4) Calc. C 44.1 H 3.7 N 22.9 OCH₃ 6.3 Found $*$ 44.3 $*$ 3.9 $*$ 22.5 $*$ 6.4

The hydrazone is almost insoluble in benzene and very slightly soluble in acetone. It crystallizes well from nitromethane. 50 mg gave 40 mg of recrystallized product; m. p. $249-250^{\circ}$. Recrystallization gave 30 mg; m. p. $248-249^{\circ}$. This product was dried (sulfuric acid, 0.01 mm, 80°, 16 hours) and analyzed.

Note 1. Analytical grades of ammonium bromide and of methanol were used. The furfuryl methyl ether was prepared after Pummerer et al.⁴ (b. $p.760 = 136^{\circ}$, $n_D^{25} = 1.4511$).

SUMMARY

2,5-Dimethoxy-2,5-dihydrofurfuryl methyl ether has been prepared by electrolytic methoxylation of furfuryl methyl ether. Catalytic hydrogenation gave 2,5-dimethoxytetrahydrofurfuryl methyl ether. Both compounds are new.

REFERENCES

- Clauson-Kaas, N. (to Kemisk Værk Køge A/S). Belg. patent 500356 (1951); Clauson-Kaas, N., Limborg, F., and Glens, K. Acta Chem. Scand. 6 (1952) 531.
- 2. Clauson-Kaas, N., Limborg, F., and Dietrich, P. Acta Chem. Scand. 6 (1952) 545.
- 3. Clauson-Kaas, N., and Limborg, F. Acta Chem. Scand. 6 (1952) 551.
- 4. Pummerer, R., and Gump, W. Ber. 56 (1923) 999.
- 5. Pummerer, R., Guyot, O., and Birkofer, L. Ber. 68 (1935) 480.

Received January 9, 1952.