Studies on Carbamates

VI. The Carbamate of Glycine

ARNE JENSEN, J. BUUR JENSEN and CARL FAURHOLT

The Royal Danish School of Pharmacy, Copenhagen, Denmark

In a previous investigation 1, during which was studied the equilibrium conditions and the reaction mechanism of the formation and decomposition in aqueous medium of the carbamates formed by ammonia, methylamine and dimethylamine, a few experiments were done concerning the carbamate of glycine. The present investigation is supplementary to those previous experiments. The equilibrium conditions and reaction mechanism of glycine being analogous to those of the alanines, and the experimental method being similar, we find that on the whole it is sufficient here to state the experimental data and the calculated constants, referring for further information to the investigation of the alanines 2.

The preparation of glycine used in the present investigation was one which fulfilled the demands for purity stated by S. P. L. Sørensen³, except for a content of 0.05 per cent ammonia, an amount being, however, of no significance in the present investigation.

The following expression was used for the calculations

$$\frac{a_{\rm H^+} \cdot c_{\rm CH_1NH_1 \cdot COO^-}}{c_{\rm CH_4NH_3 \cdot COO^-}} = K'_{\rm AmH^+} = 10^{-9.88} \, 4$$

Table 1. Carbon dioxide in glycine + NaOH . 18°.

Initial solution		Absor- %		Final solution		Mean		k _{CO₂. Am}	
c _{NaOH}	$c_{ m Am}$	bed CO ₂ Mol/liter	carba- mate	$c_{ m NaOH}$	$c_{ m Am}$	$c_{ m NaOH}$	$c_{ m Am}$		Mean
0.20	0.20	0.0191	52.5	0.17	0.19	0.19	0.20	10 5,04	
0.20	0.10	0.0188	35.6	0.17	0.09	0.18	0.10	10 5,04	105,05
0.10	0.10	0.0203	55.4	0.07	0.09	0.09	0.09	10 5,07	

Initial solution		%	Equilibrium				K_{Eq}		
C(AmH) ₂ CO ₃	$c_{ m AmH}+$	$c_{\mathbf{Am}}$	carba- mate	$c_{ m AmH}+$	$c_{ m Am}$	c _{carba-}	$c_{ m HCO_3}$		Mean
0.02 0.02	0.05 0.05	0.05 0.10	55 ¹ 64 ²	0.073 0.073	0.056 0.104	0.011 0.013	0.0064 0.0041	10 -1,48 10 -1,47	10-1,48

Table 2. The solutions of carbonate-carbamate in equilibrium. 18°.

Table 3. Velocity constants for the process: carbamate \Rightarrow carbonate; $pa_H = ca. 10. 18^{\circ}$.

Initial solut	3.51	%	_			
	$c_{\mathbf{AmH}} +$	$c_{ m Am}$	Min.	carba- mate	$k_{ m amate} + k_{ m onate}$	
$0.02~M~{ m (AmH)}_2{ m CO}_3$	0.05	0.05	41 80 160 261 1425 1440	13.2 21.4 35.1 44.6 56.6 55.6	0.00287 0.00263 0.00269 0.00267 Mean: 0.0027 k _{amate} : 0.0012 k _{onate} : 0.0015	

Table 4. Velocity constants for the process: carbamate \rightarrow carbonate; $pa_{H}=ca.13.18^{\circ}$.

Initial s		3.5	% carba-		
^C carbamate	$c_{ m NaOH}$	$c_{ m Am}$	Min.	mate left	$k_{ m amate}$
0.011	0.19	0.19	0 242 1211 1680 2640 ca. 1 month	100 92.5 67.8 60.1 43.4	0.000140 0.000139 0.000131 0.000137

¹ Mean of 7 determinations: 53.5, 53.5, 53.8, 56.6, 55.6, 55.7, 55.5.

^{» » 4 » 62.9, 64.6, 63.7, 63.7.}

Initial solution					k _{an}	ıate	$k_{ m onate}$	
C(AmH)2CO3	^C carbamate	$c_{ m AmH}+$	$c_{ m Am}$	$c_{ m NaOH}$	exp.	calc.	exp.	calc.
0.02	0.011	0.05	$0.05 \\ 0.19$	0.19	0.0012 0.00014	0.0013 0.00019	0.0015	0.0014

Table 5. Velocity constants, experimental and calculated.

SUMMARY

The velocity constant of the reaction " $\mathrm{CH_2NH_2\cdot COO}^- + \mathrm{CO_2} = \mathrm{CH_2NHCOOH\cdot COO}^-$ " and the equilibrium constant for the reaction " $\mathrm{CH_2NHCOO}^- \cdot \mathrm{COO}^- + \mathrm{H_2O} = \mathrm{HCO_3}^- + \mathrm{CH_2NH_2\cdot COO}^-$ " have been determined. The velocity of the decomposition of $\mathrm{CH_2NHCOO}^- \cdot \mathrm{COO}^-$ in basic medium was investigated and may be explained in assuming that the decomposition is a two-stage reaction, viz.

carbamate = glycine + carbon dioxide carbon dioxide = carbonate

REFERENCES

- Faurholt, C. Kgl. Veterinær- og Landbohøjskoles Aarsskrift 1 (1924); translated into French in J. chim. phys. 22 (1925) 1.
- 2. Jensen, A., and Faurholt, C. Acta Chem. Scand. 6 (1952) 385.
- 3. Sørensen, S. P. L. Compt. rend. trav. lab. Carlsberg 8 (1909) 37.
- 4. Bjerrum, N., and Unmack, A. Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 9 (1929) 1.

Received July 2, 1951.