noted separately; the sum can be computed directly on the calculating machine.

The sum is in this case 20.9212 cm3, and after division by the square of the magnification factor, one obtains the figure 3.2667 cm2. This has to be divided by $2r(r_2-r_1) = 2 \times 5220 \times 66.33 = 692.485$ sec. Consequently the diffusion coefficient is $4.717 \cdot 10^{-6}$ cm2/sec. After recalculation from the temperature during the experiment, 21.1°, to 25.0°, and to infinite dilution as described by Gosting and Morris, one obtains $D = 5.254 \cdot 10^{-6}$ cm2/sec. This figure differs by less than 0.1 per cent from the value obtained in the same experiment by the height-area method, and by 0.45 per cent from the value given by Gosting and Morris.

This investigation is part of a research program for the development of improved methods of optical analysis of stationary and flowing liquids, which program is generously supported by the Swedish Technical Research Council. Laboratory facilities and additional financial aid has been given by LKB-Produkter Fabriksaktiebolag, Stockholm.

Received October 31, 1951.

On the Presence of a Tuberculous Factor in Organ Extracts from Cow *

Preliminary report

K. B. BJÖRNESJO

Department of Medical Chemistry, University of Uppsala, Uppsala, Sweden

The presence of a thermostable substance in human urine, which dialyses through cellophane, and has a bacteriostatic and bactericidal effect toward tubercle bacilli has been reported earlier 1. Furthermore, it could be shown that this substance was not identical with urea, hippuric acid, creatinine, urinary phenols, or salta. Experiments with urine from patients with tuberculosis of the kidney seemed to indicate that this type of urine had a weaker tuberculous effect than normal urine.

Because of this observation and because it had proved difficult to purify the tuberculostatic substance from urine, attempts were made to isolate a similar tuberculostatic substance from other sources. Bovine urine appeared to have an inhibitory effect toward tubercle bacteria of about the same order as human urine, and for this reason extracts from several organs of the cow were tested.

It could be shown that water extracts of spleen, lung, liver, kidney and muscle did have a tuberculostatic effect. The active substance from these extracts is similar to the urinary factor in that it is thermostable and is adsorbed on activated charcoal. Furthermore, it can also be eluted from the charcoal with acetic acid.

* After the completion of this work I became aware of a note by R. J. Dubos on the occurrence of a tuberculostatic agent in animal tissues [Am. Rev. Tuberc. 63 (1951) 119]. The active factor had been extracted by acid alcohol from several organs of cattle, rabbits and guinea pigs.
A similar substance even seems to be present in bovine serum, and it can be separated from serum protein by dialysis.

 Received November 26, 1951.

A Disregarded Complication in the Synthesis of β-Ketoesters by the Base Catalysed Acidolysis of Diethyl Acymalonates

ARNE BRANDSTROM

Chemical Institute, University of Uppsala, Uppsala, Sweden

The author has recently described a method for preparing β-ketoesters using a base catalysed acidolysis of diethyl acymalonates according to the following equation:

\[
\text{RCOCH} \left(\text{CO}_2\text{C}_2\text{H}_5\right)_2 + \text{RCO}_2\text{H} \rightarrow \\
\text{RCOCH}_2 \text{CO}_2\text{C}_2\text{H}_5 + \text{RCO}_2\text{C}_2\text{H}_5 + \text{CO}_2
\]

This reaction was found to give mixtures of β-ketoesters if the acyl group of the acid was not the same as that of the acylmalonate used.

This fact and some other observations have called my attention to the possibility that the β-ketoesters obtained are not quite pure even if both the acyl groups are the same. The main impurities resulting from the acyl group mobility would be the corresponding β-diketone and diethyl malonate. The reaction leading to these products probably is:

\[
\text{RCOCH} \left(\text{CO}_2\text{C}_2\text{H}_5\right)_2 + \text{RCOCH}_2 \text{CO}_2\text{C}_2\text{H}_5 \rightarrow \\
(\text{RCO})_2\text{CHCO}_2\text{C}_2\text{H}_5 + \text{CH}_2(\text{CO}_2\text{C}_2\text{H}_5)_2 \\
(\text{RCO})_2\text{CHCO}_2\text{C}_2\text{H}_5 + \text{RCO}_2\text{H} \rightarrow \\
\text{RCOCH}_2\text{COR} + \text{RCO}_2\text{C}_2\text{H}_5 + \text{CO}_2
\]

In my first preparation of ethyl propionylacetate the possibility of an impurity in the form of diethyl malonate was fully realised and a test according to Breslow, Baumgarten, and Hauser was made for this compound. This test was negative. These authors stated, that the complete solubility of the product in 5% sodium hydroxide will show the absence of any appreciable quantities of diethyl malonate. However, such a statement is false as diethyl malonate itself is readily soluble in 5% sodium hydroxide. Later experiments have shown, indeed, that the product was contaminated by appreciable quantities of diethyl malonate and dipropionylmethane.

It can be demonstrated that the ethyl diacetylacetate is a probable intermediate product since ethyl diacetoacetate can be isolated in appreciable quantities from the reaction of diethyl acylmalonate and ethyl acetoacetate.

The second step in the reaction, the acidolysis of the ethyl diacetylacetate with an organic acid is a well-known reaction for the preparation of β-diketones.

In order to see the extent to which these side reactions have proceeded in the preparations of the β-ketoesters reported in the previous publication, the products have been tested for the diketone and the diethyl malonate.

The synthesis of ethyl propionylacetate was repeated on a 2 mole scale. When the product was carefully fractionated through a very efficient Pyrex Widmer column, a forerun of 47 g b.p. 40–68°/7.5 mm was obtained. This fraction was precipitated with a solution of copper acetate, yielding the copper derivative of dipropionylmethane m.p. 212° corresponding to 31 g of dipropionylmethane b.p. 59°/9 mm, or a 12% yield based on the diethyl propionylmalonate.

The prefractuation was followed by a fraction boiling at 68–69°/7.5 mm and a fraction at 72–73°/7.5 mm together with a very small middle fraction b.p. 69–72°/7.5 mm. A determination of the refractive indices of the two main fractions showed that the low boiling product had a somewhat higher