Utilization of a-Ketoadipic Acid by Lysineless *Ophiostoma* Mutants

SUNE BERGSROM and MAX ROTTENBERG

Department of Physiological Chemistry, University of Lund, Lund, Sweden

Recently Borsook et al. 1 found that lysine was degraded to a-aminoadipic acid, a-ketoadipic acid and glutaric acid in mammalian tissue. Mitchell and Houlahan 2 then found that one lysineless Neurospora mutant could utilize a-aminoadipic acid in the place of lysine whereas three other genetic types were unable to do so. a-Ketoadipic acid or glutaric acid did not support growth.

As mentioned in an earlier note ³ we have also found that a number of the lysineless *Ophiostoma* mutants isolated by Fries ⁵ can utilize *a*-aminoadipic acid.

We now wish to report that the growth of a number of these mutants also can be supported by a-ketoadipic acid as shown by the following data.

Table 1. Growth response of Ophiostoma mutant 1320.

Addition to 25 ml basal medium (millimole)			Mg dry weight of mold after three weeks		
0			0,	0	
0.002	L-lysine		11,	12	
	L-lysine		99,	102	
0.020	D, -a-amin	oadipic			
		acid	27,	29	
0.020	a-ketoadip	ic acid	27,	9	
0.050	» ⁻	»	52,	54	
0.100	*	*	76,	74	
0.020	glutaric ac	id	0		

The technic used has been described by Bergström and Sjöbeck ⁴.

a-Ketoadipic acid was prepared according to Gault ⁶ except that the intermediate trimethyl-2-oxaloglutarate was decomposed by a milder method i.e. heated in 4N hydrochloric acid 45 minutes on the water bath. After recrystallization from ether or acetone-ether, the a-ketoadipic acid melted at $123-125^{\circ}$.

These results thus lend further support to the assumption that lysine can be formed or degraded in different types of organisms according to the general scheme.

	COOH	COOH		CH ₂ NH ₂
	CH ₂	CH ₂		CH ₂
=	CH₂ ⇌	CH ₂	=	CH_2
	CH ₂	CH_2		CH ₂
	co	CHNH ₂		CHNH ₂
	COOH	COOH		COOH

In different organisms the synthesis can be blocked at different points due to the lack of a specific enzyme.

A full report will appear in *Physiologia Plantarum*.

This work is part of an investigation supported by Magn. Bergvalls Stiftelse, Stockholm.

- Borsook, H., Deasy, C. L., Haagen-Smit, A. J., Keighley, G., and Lowy, P. H. J. Biol. Chem. 173 (1948) 423, 176 (1948) 1383.
- Mitchell, H. K., and Houlahan, M. J. Biol. Chem. 174 (1948) 883.
- Bergström, S., and Pääbo, K. Acta Chem. Scand. 3 (1949) 202.
- Bergström, S., and Sjöbeck, B. Physiol. Plantarum 3 (1950) 68.
- 5. Fries, N., Nature 159 (1947) 199.
- 6. Gault, H. Bull. Soc. Chim. 11 (1912) 382.

Received April 22, 1950.