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he main methods for potentiometric determination of the complexity

constants of a complex system are founded on measurements of the con-
centration of free ligand or of free central group. Such methods have been
described by J. Bjerrum! and Leden 2. In a previous treatise 3, the present
author has developed methods of these two kinds and furthermore a third
method, based on the use of cells without liquid junction. These three methods
are suited for a determination of the complexity constants of the mononuclear
complexes, irrespective of whether or not polynuclear complexes are formed,
and in this respect they are general. Under favourable circumstances the
constants of some of the dinuclear complexes can also be determined.

In practice, the choice of a measurement method will depend on the
possibility of finding a suitable electrode. Many complex systems cannot be
investigated by any of the methods mentioned, because there is no electrode
of the first or second order, by means of which the concentration of free ligand
or free central group can be determined. So e.g. the complex formation
between Cu?t and CI” cannot be investigated potentiometrically by means of
a copper amalgam electrode or a silver chloride electrode, as both of them
reduce Cu?* to Cu* in the presence of CI". In such a case it would be desirable
that the measurements could be made via a second ligand, employing a non-
reducing electrode.

The basic principle of the new method, described below, is the use of a
three component complex system. Thus the solutions contain a central group
M and two competing ligands A and B. It is thus possible to have the forma-
tion of complexes with A or B as ligands, and furthermore the formation of
mixed complexes with both A and B as ligands. The affinity of M for B must
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be greater than that of M for A, so that B will finally completely displace A
as ligand, if the concentration of A is kept constant, while that of B is increased
within a limited range. When the measurements give a direct determination
of the concentration of free ligand [B] in the solutions, it will be shown below
that it is possible to calculate the complexity constants of the mononuclear
complexes MA, MA,, ..., MAy. The complexity constants of mixed comple-
xes of the type MA;B (j = 1,2,...) can also be determined. Naturally the
constants of the B-complexes MB; (j = 1,2, ...) can be calculated too, in
the manner described in the previous treatise.®, >

This method of determining the complexity constants of the A-complexes
by means of another ligand will be called the “method of ligand displace-
ment”’.

Deduction of the equations necessary for the
calculation of the complexity constants

For the sake of brevity, we postulate that in the solutions, containing the
central group M and the ligands A and B, only mononuclear complexes of the
general type MAB, are formed. As will be seen below, our equations easily

“can be generahzed so that they are also valid, when polynuclear complexes
are formed.

For the known total concentrations of M and B we have the following
expressions:

N :
=[M]+ > [MABJ; j,k=0 (1)
f+k=1
N
Cp = [Bl+ 2 k[MAB,] (2)
j+k=1

We apply the law of mass action to the dissociation equilibria of the complexes
and obtain *:

Bix = [MAB,] [M][AT[BT™ (3)

As the measurements are performed at a constant ionic strength, we may
presume that the complexity “constants’ g;, remain approximately constant,
when the total concentrations Oy, C, and Cj are varied within limited ranges.
By substituting eq. (3) in (1) and (2), we obtain the expressions:

* The constants that we in the first place intend to determine are fj, 0, for which the notation
Bi is used when the solutions contain only one sort of ligand.
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N
Cu = MI(L+ > B;4[AT[BT) (4)
f+k=1
N
Oy = [B] + [M] > &B;,[AY[B} (5)
k=1
For the sake of brevity we use the notation:
N
X([AL [B) =1+ 2 B, [AY(B} (6)
i+k=1

[ ]
In the following we shall sometimes write only X in place of X ([A], [B]).
By partial differentiation of X we get:

X N . .
98] =3P AT g

The ligand number #, with respect to the ligand B, is defined in the usual way:

__ Cy—[B]
Combining eq. (4—8) we obtain:
X _7,,_ 0
3Bl [B] ®

Here 7 is a function of [A] and [B]. Eq. (9) is deduced under the assumption
that only mononuclear complexes exist. If polynuclear complexes are also
formed, the expression for n will contain terms with [M], [M]? etc. as factors
(¢f. Fronzus® ™) Then % will be a function of [A], [B] and C,. But if
we allow Cy - 0 (that is [M] — 0) these terms cancel, and we have the
quite general equation:

2lnX _(L) (10)
21 \[Bl/gy -0

For the sake of clarity we put (n)cy =o0= n ([A], [B]). By 4n we mean the
difference between the ligand numbers of two solutions, the first of which
has [A] = 0, while [B] and C), are the same in both solutions. Then we have:
n (0, [B]) —n ([A], [B]) = (4 n)cy =0. If [A] is kept at a constant value
[A],, we obtain by integration of (10) with respect to [B]:
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[B]

X([Al, (Bl) _ [ A(AL, [B) |
" X a0 f m P an
For [A], = 0 this equation is reduced to:
P 0. )
n (Y,
mx o, Bl = [ " dIB] (12)

0

Eq. (12) is identical with the eq. (24) of the previous treatise * » **. From
eq. (11) and (12) we derive:
[Bls

| X(A), [BlL) [ (4%

The term of the polynomial X ([A], [B]) which is of the highest degree with
respect to [B] is f, y - [B]". Then we have presumed that the saturated com-
plex MB,, which cannot take up an additional ligand B, cannot take up a
ligand A either. Hence it follows that:

i X (AL, [BL,)
H X0, Bl

(Bly = ©©

=1

As already mentioned, this means that if C, is kept constant but Cy is increased,
the higher M—B complexes become the predominant complexes in the solu-
tions. Thus B will completely displace A as ligand, and the stronger a complex
former (with respect to M) B is than A, the faster this displacement will pro-
ceed. The validity of this assumption can be examined experimentally, for if
we choose a ligand B with the proper affinity for M, it will be possible to find a
value b, within an appropriate concentration range, so that when [B] = b the
function (4n/[B])cy =a-is = 0, the random errors considered. If b is taken
as the upper limit of integration in eq. (13), we consequently obtain:

b

In X ([A],, 0) = of(%)cmﬂ.dém (14)

It is evident that the greater the value of [A], is, the greater becomes the value
of b which must be taken.



76 STURE FRONAZAUS

Determination of corresponding values

of [B] and(f[i—gz]—)c ,
M=

The calculation method is based on an experimental determination of
[B] in the complex solutions. The measurements are arranged in the following
way. In a series of measurements C, and Oy are kept constant *, and Cj is
varied. From the ligand measurement (regarding [B]) we obtain n/[B] which
can be plotted against [B] with O}, (or its starting value in the series) and C,
as parameters. By repeating the measurements at different values of C,,,
but still at the same value of C,, the limiting function (n/[Bl)cy =0 = = ([A),.
[B])/[B] can be obtained by extrapolation. At Cy = 0, [A], is also constant
and = C, at varying [B]. The function = (0, [B])/[B] at C, = 0 is determined
in the same way (cf. Fronweus * ™ %), From the difference we get the function
(4n/[B])cy = o, and then the integration in eq. (14) is performed graphically and
will give us a pair of values of [A], and X ([A],, 0). After a sufficient number
of corresponding values have been obtained in this way, the complexity con-
stants of the complexes MA; (j = 1,2, ...) can be calculated from the eq.:

N
X([AL, 0) =1+ 21/3,- [AL, (18)
-

In (15) the complexity constants have been denoted by B, instead of B; ,
as no confusion is to be feared here.

If the complexity constants of the complexes MB, are not known in
advance, they can be computed from eq. (12).

Calculation of the complexity constants of mixed
complexes of the type MAB

By combining eq. (6) and (10), we obtain the relation:

N—1

Z Bia [AY (16)

3 " __i=0
tim <[B]>cM 0T X (ALO)
{B) -0

* In order to reduce the number of titration solutions necessary, we may also allow Uy to
vary in the series. Then Oy must be a known function of Cp (see eq. (18)).
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At different values of [A], the limiting values of the left member of eq. (16)
are estimated by graphical extrapolation of (n/[B])cy =0 to [B] = 0. The corre-
sponding values of the polynomial X([A], 0) have already been calculated,
and f,,, the constant of the complex MB, is determined in advance. Thus
from eq. (16) we can compute as many of the constants 8,4, f,;, By_y,, as the
concentration range of [A] will admit.

Estimation of the random errors

From the reproducibility obtained in the measuring of [B], the maximum
random errors in the values of the functions 7(0, [B])/[B] and » ([A],,
[B])/[B] can be estimated as well as the corresponding maximum error in their
difference. If the last-mentioned error is denoted by e, and is considered to
be practically constant at different values of [B], as it was in the measurements
described below, the maximum error of nX([A],, 0), computed from (14),
will be & - b.

Another error may arise from the fact that in eq. (14) we have a finite
range of integration (0 to b instead of 0 to co0). From the algebraical expres-
sion for the function (An/[B])cy = o, it is easily seen that the function, at great
values of [B], can be approximated by ¢([A])-[B]™2, as no mixed complex
with N B-ligands exists. If no mixed complexes with N—1, ..., N—k
B-ligands are formed, we can use, at great values of [B], the approximation
@([A]) - [B]™2, and at increasing values of b the integral in eq. (14) then
converges more rapidly. Thus, in the most disadvantageous case, we have as
an approximate expression of the omitted integral R:

[+ ]

_ [ #(AD _ o(AD
R = f B -.d[B] = e

(17

When [B] = b, the integrand is ~ 0 according to our measurements. Then

on the basis of the estimated random errors, the true value can be & at most.
A

P(AD _

-~ e ; (R)

p = =c¢e-b

max.

Thus, the total maximum error of InX([A],,0) is 2¢&-b.

It is rather difficult to decide how the product & . b depends-on the strength
of the M—B complexes. However, in order to secure approximately constant
activity coefficients it is necessary that the value of b be considerably smaller
than the chosen ionic strength.
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A POTENTIOMETRIC INVESTIGATION OF THE Cu2+—802- SYSTEM WITH
Ac™* AS THE DISPLACING LIGAND

In order to examine the applicability of the method described, it has
been applied to the cupric sulphate system, which the present author has
investigated in a previous work ® ™ ¥ by potentiometric and spectrophotometric
methods. In the latter work the potentiometric investigation was a central
ion measurement, that did not presuppose anything regarding the composition
of the complex system. These previous measurements proved that Cu2*
forms considerably weaker complexes with SO}~ than with Ac™, and therefore
the last-mentioned ion has been taken as the displacing ligand. In order to be
able to compare the results, we have used the same ionic strength, 1 C
(mols/litre), with sodium perchlorate as a neutral salt.

Chemicals used. The same preparations of cupric perchlorate, sodium perchlorate,
perchloric acid, sodium sulphate, sodium acetate, acetic acid and quinhydrone were
used as in the earlier investigations® P 3. The cupric perchlorate, however, was
further purified by recrystallisation from water, so that the excess of perchloric acid in
the preparation was negligible.

The measurements for the determination of [Ac™] = [B] were carried out
with the quinhydrone electrode, as this gives great reproducibility and its
applicability for this purpose has been examined in the previous work® » %,
The cells, the emf:s of which have been measured, were of the following type:

quinh. (s)
complex
solution

+ RE Au—

The reference electrode RE had the same composition as before® P 3, and the
salt bridge consisted of 1 000 mC NaClO,. The solution of the right half-cell
was obtained by mixing two solutions S, and S,, both of them of an ionic
strength of 1 C.

‘(@ mC Cu(ClO,), O, mC Na,S0,
8, = { Ca mC Na,80, o _ ] 500 mC NaAc
(1000—3a—3C) mC NaClO, 2 = 250 mC HAc

(500—3C, ) mC NaClO,

Then for the measuring solution we have the following relation between Cy
and Cp in mC:

* Ac- = acetate ion.
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Oy =a (1_.506%) | (18)

The mixing was carried out in the electrode vessel, and good stirring was
brought about by a stream of nitrogen gas, released from oxygen and led
through 1 C NaClO, in order to obtain the correct water pressure. The cells
were placed in a thermostat at 20.00 4 0.02°C. The emf:s measured were
very steady and reproducible within 0.1—0.2 mV.

The emf in mV of the cell, given above, is denoted by E. At the same values
of C, and Cjy, but at Cy = 0, the emf is called E,. The value of E, is practic-
ally independent of Cy within the concentration range used, but varies some-
what with C, (see Table 1). The difference E,—E = Ey is the emf of a con-
centration cell, and we have

[(H+]
[H*Jo

E, = 58.16 log (19)

if we neglect the effect of somewhat different liquid junction potentials and
activity coefficients in the two halves of the concentration cell. [H*], denotes
the concentration of H* in the solution with € = 0. The concentration of
undissociated acetic acid is:

0.500 - Cp, — [HSO,”] — [H+] = 0.500 - Cy — &

The correction term @ is calculated from the relation ¢ = [H*]([SO,27]/K, 4 1),
where K, is the secondary dissociation constant of the sulphuric acid. At
Oy = 0, the correction term is called 9. For the calculation of & and 4,
we may put [SO,2] ~ C,. For the dissociation of the acetic acid we have:

[H*1[B] _ [H*) (Cs + %)
0.500-Cy — & 0.500 - Cp, — 9,

or approximately:
[H*] Oy —29+ 34,

— = 20
[T, (5] 20)
For the ligand number n (regarding B) the expression is:
G 4 — [B

Cx
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where C + 9 is the corrected value of the total concentration of B. In order
to compute the correction terms ¢ and &, it is necessary to make an approxi-
mate determination of the dissociation constant K,. For this reason the emf
of the cell .

quinh. (s) \

Cy mC HCIO, | Au —

(1000—Cg) mC NaClO, !

+ RE

was measured and gave a calibration curve, representing the relationship
between the emf and [H*] = Cg. A new series of measurements were then
carried out, when the solution of the right half-cell had the composition C,
mC Na,S0,, Oy mC HCIO,, (1 000—3C,—Cy) mC NaClO,, and with the relation
8 C, + 3 O = 1000 mC. From the emf, measured at different Cy, and the
calibration curve, [H*] in these solutions was calculated without the liquid
junction potentials influencing the measurements essentially. K, could then
be computed, and at Cx < 100 mC the value of K, was fairly constant and
equal to (8.4 4- 0.5) - 1072 C. Thus we know all data that are necessary for the
determination of [B] and n/[B] from eq. (19—21) and the values of K.

Table 1. Determination of [H*), and &, at different Cy.

Cr | B 8,
mC ; mV mC mC i
. | |
0 . 169.6 0012 001 !
50 L 169.0 0.012 0.02 |
L 100 | 168.5 0.013 | 003
L 150 | 1673 0.013 | 0.04 ;

The values obtained from the potentiometric measurements of the cupric
sulphate system are shown in Table 2. In the first four measurement series in
the table (nos. 1—13) the factor a in eq. (18) has a value of 100 mC, and in the
remaining four measurement series (nos. 14—27) a value of 50 mC. Every
value of Ky is a mean value from at least two parallel measurements.

To obtain further proof of the applicability of the quinhydrone electrode,
a measurement series (C, = 0) was repeated with a glass electrode (Radio
meter, type G 100), combined with a valve potentiometer (Radiometer, type
PHM 3 h). The cells measured were of the following type:

complex
solution

glass
electrode —

+ RE
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Table 2. Potentiometric measurements on the cupric sulphate system with the acetate ion
as a displacing ligand.

M = Cu?t, A= SOi - B = Ac-

Cy =0 Ca =50 | Op =100 | Cp = 150
No. Ox Cs mC mC mC mC
mC mC
EB mV

1 97.4 12.99 43.2 39.7 36.7 33.4

2 96.2 19.23 42.0 38.6 35.8 32.3
3 93.8 31.3 39.8 36.6 34.1 30.5
4 90.9 45.5 37.4 34.4 3L.8 28.5
5 88.2 58.8 35.1 32.1 29.8 26.8
6 83.3 83.3 30.6 28.2 26.2 23.5

7 750 | 1250 23.8 22.0 20.8 18.8
8 68.2 | 159.1 18.9 17.9 16.9 15.3
9 60.0 200.0 14.3 13.8 13.2 11.9
10 50.0 250 10.1 9.9 9.6 8.7
11 37.5 313 6.5 6.6 6.3 5.9
P12 25.9 370 4.1 4.1 4.0 3.8
13 13.04 435 2.0 1.9 2.0 2.0
14 49.3 6.58 29.6 26.8 23.9 21.3
.15 48.7 12.99 28.4 25.6 23.0 20.2
l16 48.1 19.23 2711 244 21.8 19.2
17 46.9 31.3 247 | 222 20.1 17.7
18 454 45.5 222 1 20.0 18.2 16.1
19 44.1 58.8 20.1 18.0 16.4 14.6
20 41.7 83.3 16.6 15.0 14.0 12.5
21 37.5 125.0 12.0 11.1 10.5 9.6
22 34.1 159.1 9.3 8.8 8.4 7.7
23 30.0 200.0 7.1 6.8 6.5 6.0
24 25.0 250 4.9 4.9 4.8 4.4
25 18.75 313 3.2 3.3 3.3 3.1
26 13.00 | 370 2.2 2.1 2.2 2.1
27 6.52 | 435 1.1 1.0 1.2 1.2

Concerning the determination of the slope of the glass electrode and experi-
mental details, the reader is referred to the previous treatise® ™ %, K, was
determined before, as well as after, the measurement of E, in order to control
that the asymmetry potential was a constant during a measurement series.
Within the limits of the random errors, the measurements with the glass
electrode gave the same values of Ey as the measurements with the quin-
hvdrone electrode.

6
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Table 3. Determination of n| [B] as a function of [B] at different values of the parameters

C, and a.
o Cp = Cap = 50 mC Ca = 100 m Ca = 150 mC
No. n 1 n n o n
9 B — /) B —~— 9 B — ? B -
[B] iB] [B] (B] [B] (B] [B] [B]

mC | mC| Cl|mC|mC|Cl|{mC|mC|Cr| mC| mC| C?

1]0.07| 233 47.3 | 0.09 | 2.67| 40.0 | 0.12 | 3.00| 34.6 | 0.14 | 3.41| 29.3
21007 | 3.62 45.0 | 0.08 | 4.15| 38.0 | 0.11 | 4.62| 33.1 | 0.13 | 5.30| 27.6
3 6.47| 40.9 | 0.08 | 7.33| 35.0 | 0.1 8.06| 30.7 | 0.1 9.30| 25.3
4 10.35| 37.4 11.65| 31.9 12.92| 27.7 14.72| 23.0
5 14.65| 34.2 16.50| 29.1 18.07| 25.6 20.4 | 21.4
6 24.8 | 28.3 27.3 | 24.7 | 29.5 | 21.9 32.9 | 18.4
7 48.7 | 21.0 52.3 | 18.5 ! 54.9 | 17.0 59.4 | 14.7
8 L 75.2 | 16.3 78.4 | 15.1 81.5 | 14.0 . 86.8 | 12.2
9 113.5 | 12.7 115.9 | 12.1 ‘118.7 | 1L.5 125.0 | 10.0
10 168 9.8 169 9.6 171 9.2 177 8.2
11 242 7.8 242 7.8 244 7.6 248 7.0
12 315 6.8 315 6.8 315 6.8 319 6.3

14 | 0.04 | 2.02| 46.2 | 0.06 | 2.25| 39.5 | 0.07 2.51| 33.4 | 0.09 2.80| 28.0
15 | 0.04 | 4.20| 43.3 | 0.05 | 4.69; 36.6 | 0.07 5.19| 31.1 | 0.08 5.80| 25.7
16 | 0.04 6.57| 40.2 | 0.05 7.30| 34.1 | 0.07 8.08| 28.9 | 0.08 8.96| 24.0

17 11.77 35.3 13.00, 30.0 14.13 25.9 15.53| 21.6
18 18.88 31.0 20.6 | 26.6 22.1 | 23.2 24.1 | 19.6
19 26.5 | 27.6 28.8 | 23.6 30.7 | 20.8 33.0 | 17.7
20 43.2 | 22.3 46.0 | 19.5 47.9 | 17.7 50.8 | 15.4
21 77.7 | 16.2 80.6 | 14.6 82.5 | 13.7 85.6 | 12.3
22 110.1 | 13.1 112.3 | 12.2 . 114.1 | 11.6 117.3 | 10.5
23 150.9 | 10.8 1562.8 | 10.3 ' 154.6 | 9.8 1567.8 | 8.9
24 206 | 8.6 206 | 8.6 207 | 83 210 | 7.6
25 276 | 7.2 276 | 7.2 276 | 7.2 276 | 7.2

From Table 2 it is obvious that the values of Ky, at different C,, gradually
coincide when Cy is increased. In Table 3, [B] and =/[B] of the solutions
measured have been calculated. It is only necessary to compute the correction
term ¢ at the smallest values of Cy, and it is evident that [HSO,] is quite
negligible, compared with C,.

Fig. 1 represents the measurements graphically at [B] < 55 mC. The
function n/[B] is dependent on the factor a in eq. (18). The reason for this is
that in two solutions with the same values of C, and [B] but with different
values of Oy (that is of @), [A] is greatest in the solution that has the smallest
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% ! ) ) ! ]
10 20 30 40 50 [B: mC

Fig. 1. w/[B] as a function of [Bl. 1.04 =0; 2. C4 = 50 mC; 3. C4 = 100 mC;
4. C4 = 150 mC. — Fulldrawn curves are valid at @ = 100 mC (see eq. (18)); dashed
curves at a = 50 mC.

concentration Cp. Polynuclear complexes also may contribute to the de-
pendence on a.

The definition of An has been given above (p. 74). In Table 4 the function
An/[B] has been calculated at different values of [B]. The values in the columns
2—7 have been obtained from the graphical representation of n/[B]. As
potentiometric measurements have been performed at only two values of the
parameter a, it has been presumed from the extrapolation of An/[B] to a = 0
(that is Cy = 0), that An/[B] is a linear function of a at a constant value of
[B]. From Table 4 it will be seen that the dependence on @ is rather small,
and therefore this approximation is justified. In the columns 8—10 in Table
4, the extrapolated values of (47 /[B])cy =0 at [A], = 50, 100, and 150 mC are
to be found.

As an upper limit of integration in eq. (14) for the three values of [A],we
may choose b = 0.200, 0.250, and 0.300 C, which appears from Table 4. The
values of In X ([A],, 0) have been calculated by graphical integration and are
given in Table 5.
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Table 4. Determination of (An|[B] Jcy=0 as a function of [B] at different
values of the parameter C, = [A],.

Cy = 100—9:;-3 mC Cyr — 50—%3 mC Oy =0
(Bl | ¢, =50]c, =100{C, =150{C, =50 |C, =100|C, =150| 0, =50/C,=100]C,=150

mC mC mC mC mC mC mC mC mC

mC ar - An an -

B\ [B] (B]
0 72 | 133 | 190 | 75 | 141 | 195 | 7.8 | 149 | 200
50| 59 | 103 | 152 | 61 | 110 | 1569 | 63 | 117 | 16.6
100 47 | 85 | 127 | 49 | 91 | 133 | 51| 97| 139
150 | 39 | 69 | 107 | 42| 76 | 115 | 45| 83| 123
200 | 33| 58 | 92 | 36| 66 | 100 | 39| 74| 108
300 25 | 46 | 73 30 | 53 | 80 | 35| 60| 87
500 | 18 | 3.0 | 49 | 23| 36 | 53 | 28| 42| &7
750 | 10 | 1.8 | 3.2 13 | 21 | 3.4 16 | 24| 36
100 06 | 12| 24| 09| 15| 26 | 12| 18| 28
150 03 | 06| 16| o5 | 10| 18 | 07| 14| 20
200 01| 04| 10| 01| 04 | 09 | 01| 04| o8
250 0 02 | 08 | o 01 | 04 | o 0 0.2
| 300 0 0 04 | 0 0 0 0 0 0

The values of the function Azn/[B] at C, = 50 mC are, on the average, 0.3
C™ greater at @ = 50 mC than at @ = 100 mC within the main part of the
range of integration (see Table 4). The greatest deviation from this average
value is 0.2 C1. This means that the maximum error in the values of the
function is about 0.1 C™ in the two series of measurements. Then the values
of the function at @ = 0 may have a maximum error ¢ = 0.2 C. The same
value of ¢ is obtained at the other concentrations C,. Thus according to the

Table 5. Corresponding values of [Al,, X ([Ap, 0) and (7/[B])cy = o

[B] =0
T I "(7_4/[];;)“%""*'}\;11w o

| B ; n Cn = . AY
(A1 inxqal,. 0 | XA 0) oy | 2 B
mC ' ct ¢

0 48.2 48.2
50 0.37 4 0.08 1.45 40.8 59.2
100 0.65 + 0.10 1.92 33.8 64.9
150 0.97 4 0.12 ! 2.64 28.6 75.5»
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calculation of errors, given above (p. 77), the maximum random error of
In X is = 0.4-b. .

From corresponding values of [A] and X ([A], 0) in Table 5, the constants
of the mononuclear sulphate complexes have been computed from eq. (15),
and the following values have been obtained:

By=9+2C? B,=80 C3

We get a small value for f,, but since the uncertainty is great it is not justifi-
able to assign a numerical value. In the calculation of B; we may therefore
put B, ~ 0. It is hardly possible to mention an upper limit of the random
error in the computed value of f,. At an ionic strength of 1 C and with Ac™
as a displacing ligand, the sulphate concentration C, cannot be increased
materially above 150 mC, and therefore the value of B - [AJ? is small compared
with the value of the polynomial X([A],0). This fact is the cause of the dif-
ficulty in determining f; accurately.

The fourth column of Table 5, gives values of (n/[B])cy=o at [B] = 0.
They have been obtained from Fig. 1 by linear extrapolation to Cyy = 0 of
the intercepts on the n/[B]-axis, that correspond to a constant concentration

1

N-- .

C,. The values of > §; ; [A},, in the fifth column, have been calculated
i=0

from eq. (16) The complexity constant of the mixed complex CuSO,Ac™ is:

By, = 190 4 50 (2

The measurements admit no determination of the remaining constants ﬁi.l'

Discussion

In the previous measurements by the present author® P ® with an amalgam
electrode, the following values of the complexity constants of the mononuclear
sulphate complexes were obtained at an ionic strentth of 1 C: , = 10.6 C,
B, = 10—17 C2, and B, = 200 C3. The value of B, has been confirmed in the
present investigation, and the agreement shows the applicability of the
new method. The divergence between the values of B, may be caused partly
by the random errors, and partly by medium changes, since in the present
measurements part of the sodium perchlorate must be exchanged for acetate
buffer.

The complex formation in cupric sulphate solutions has been studied several
times (Mecke and Ley 4, Ley and Heidbrink 5, Rouyer ¢, Plake 7, Brintzinger
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:and Osswald 8, Davies ®, Owen and Gurry ). These investigations have been
discussed in the previous treatise * ™ . Later Nasinen!! made a spectrophoto-
‘metric study of cupric perchlorate — litium sulphate solutions. It was assu-
med that only the complex CuSO, was formed, and by means of a Debye-
Hiickel equation the variation of B, with the ionic strength was investigated.
At I =1 C the value f, = 4 C! was obtained. However, a neglecting of the
complex Cu(SO,);” must give too low values of f, in such measurements even
at small concentrations of SO,2~ (cf. Olerup 12 P 80 Frongeus % * 1), In addition
it must be emphasized that from the variation of 8, with the ionic strength it
is not justifiable to draw any conclusions about the variation when only the
-composition is changed but the ionic strength is kept constant by addition of
sodium perchlorate.

SUMMARY

A new method for the investigation of the complex formation between a
central group M and a ligand A is described. The method is based on the use
of an auxiliary ligand B, the concentration of which can be measured in the
.complex solutions.

A competition for the central group arises between the ligands A and B,
and B must form such strong complexes, that by increasing the concentration
of B, the ligand A can be completely displaced.

The theoretical treatment shows that it is possible to calculate from the
measurements the complexity constants of the mononuclear complexes MA;
(7 =12,..., N), irrespective of whether or not mixed complexes and poly-
nuclear complexes are formed. The method also admits a determination of the
complexity constants of the mixed complexes of the type MAB (j = 1,2, . . .).

In order to examine the method it has been applied to the cupric sulphate
system with the acetate ion as the displacing ligand B. The ionic strength of
the solutions has been kept constant at 1 C by addition of sodium perchlorate.
As an acetate buffer has been used, it has been possible to determine [B] in
the solutions by potentiometric measurements, employing the quinhydrone
electrode. The measurements have been carried out at 20°C and the com-
plexity constants of CuSO,, Cu(SO,);* and CuSO,Ac™ have been computed
and found to be

ﬂ1=9:}:2 C’l; ﬁ = 80 0_3; ﬂ11=190i50 C2
a i

The complexity constant B, of Cu(S0,):2~ is too small to be calculated from
these measurements.
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The results are in rather good agreement with previous measurements by
the present author, and prove the applicability of the new method.

I am very much indebted to Professor S. Bodforss for his kind interest in this work
and for the facilities he placed at my disposal.
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