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uring the past decade, Professor J. N. Bronsted has been engaged in deve-

loping a new system for presenting the principles and concepts of thermo-
dynamics. Cast into this form he called the subject Energetics. Instead of the
traditional first and second laws he proposes two new principles; namely, the
‘work principle’, which is restricted to, and is sufficient for, an exhaustive
treatment of all reversible processes, and the ‘equivalence principle’ which
applies similarly to irreversible processes. These principles are expressed in
compact analytical form in one equation (4.22) in the following text.

They are introduced as general postulates based upon experience just as
the first and second laws of thermodynamics are introduced.

With the aid of the ‘work principle’ Bronsted achieves in a simple and ele-
gant manner a uniform treatment of all reversible processes on the basis of
the concepts of the extensive and the intensive energy factors, and ‘work’***,
without introducing the concept of heat. More especially all reversible ther-
mal processes may be completely described in terms of temperature and
entropy. It is only when proceeding to irreversible processes that phenomena
occur which require a concept of ‘heat’, which embodies some but not all of
the characteristics of the heat concept employed in the two classical laws. The
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various forms of the characteristic thermodynamic potentials introduced by
Gibbs are defined as functions often more convenient for special applications,
but their introduction like that of internal energy is not a necessary part of
his system.

The basic ideas of Energetics appeared in two monographs 23 in Danish
in 1937 and 1939. A brief summary, translated by R. P. Bell, appeared in
English in 1940 4, and also a short paper %, in which the ‘work principle’ was
used to derive the equilibrium equations for heterogeneous and homogeneous
systems. An important monograph 7 clarifying criticisms ¢ based upon mis-
understandig of this paper ® was published in 1941 (in English) under the title
of ‘The Concept of Heat’.

The fundamentals of Energetics were incorporated in the second Danish
edition of the textbook of physical chemistry 8. In his last monograph ® (in
Danish), Brensted introduces the concept of ‘transport complexes’ and
applies it together with the ‘work principle’ to the treatment of the reversible
aspects (assumed isolable) of steady state processes in thermoelectric, electro-
chemical and thermal transpiration cells.

BRONSTED’S ENERGETICS

The following is a brief perspective view of some of the ideas formulated by
Bronsted.

Energetics is motivated by the symmetry existing between all of the
various extensive energy factors (the quantities) and, likewise, between their
conjugate intensive factors (the potentials). For example, in equations like

SdT—Vdp + X ndp,; + edyp + . ... = 0

we find entropy and temperature, volume and pressure, number of moles and
chemical potential, electric charge and potential, efc., always in a conjugate
relationship. All of the extensive properties are defined such that they are
conserved, except for entropy in the special case of irreversible processes.

Next it is asserted that all the extensive factors, such as volume, mass,
electrical charge, etc., and also entropy always tend to occupy states of lowest
accessible potential. Natural (spontaneous) and unnatural (imaginary)
processes consist of the movement of the extensive factors between states of
different potentials. Each individual transport is called a basic process.

Such processes involve respectively a positive or a negative loss of ability
to perform wuseful work. This ‘loss of work’ in a process where an amount
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8K, of an extensive property of the i* kind undergoes a transport from one
potential to another, is defined as:

5‘4; = (P;(l) _“Pi(2))6Ki

Here P;,, and P,y are the potentials, conjugate to the quantity K;, of
the initial and final state of transport, respectively *.

When natural and unnatural basic processes are coupled and balanced to
within an infinitesimal difference in net potential a reversible process results.
Thus, Brensted asserts that reversible processes are made up of coupled basic
processes only, and conversely, that processes consisting of coupled basic
processes only are reversible.

The ‘work principle’ states that in reversible processes the sum 64 of the
individual 64; terms (i. e., the sum of all the ‘losses of work’ in all of the
coupled basic processes constituting the total reversible process) is zero:

04 =X 04, =X, (P;n -~ P, (3) 0K, =0 (2)

In irreversible processes the sum 84 is not zero but positive; there is a
positive loss of potential work.
The ‘equivalence principle’ states that:

8A = TS (3)

* Brensted recognized the necessity of broadening the concept and definition of work beyond
the narrow limits it enjoys in the classical presentation in order to achieve the uniform and
systematic treatment which he desired for all forms of energy.

In the classical presentation, the element of work DW is an inexact differential defined as

DW = PdK 1)

Here d and D are symbols for exact and inexact differentials; P and K are the conjugate potential
and quantity factors; thus DW = pdV for volume work.

On the other hand Brensted’s ’loss of (potential) work’, d4,, always involves the difference
between two potentials. In the reversible case, d4; becomes a function of state and represents the:
maximum work the ¢%* natural process can perform upon the unnatural process with which it ix
coupled (see the following text paragraph). In spite of this similarity 64; should not be confused
with the Helmholtz free energy function bearing the same symbol.

For the transport of a finite amount of quantity between states the potentials of which
differ only infinitesimally, the ‘loss of work’ assumes the form d4 = KdP but is not in general
integrable. Also, in the special case where one of the potentials of a component process can be set
equal to zero and the amount of quantity transported is infinitesimal the ‘loss of work’ assumes
the same form and numerical value as the classical Eq. (1) but should not be confused with it.
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where 8" is the amount of entropy produced in the process. 7'68” is conse-
quently the non-compensated heat of Clausius.*

We realize the difficulty of giving a satisfying exposition of Bronsted’s
fundamental ideas in a few introductory pages; we, therefore, refer the reader
to the original articles, of which (4), (5) and (7) are in English, for the logical
operational definitions of such topics as internal energy, the absolute tem-
perature scale, entropy and heat in the system of Energetics.

- Unfortunately, the very use of the terms ‘work’ and ‘heat’ in senses which
often differ from the time honored and specific meanings of the classical
presentation leads to confusion no matter how carefully they are defined.
Also it is not easy to look with favor upon a summary replacement of the well
established first and second laws by ‘wo new postulates. Only when the
advantages of the replacement becomes evident can one expect approval.

When one examines the direct experimental evidence supporting the postu-
lates of energetics, one will find that it is not abundant, because the attention
of investigators has been directed over the past century to the justification
of the two laws in their classical form. Although we believe no one, who will
follow through the logical reasoning of Energetics, will question the validity of
the postulates on these grounds, nevertheless, the critical reader and the
student approaching the subject for the first time are justified in expecting
to be led to Energetics from an abundance of direct experimental evidence
-with which he is familiar.

Consequently, many readers and particularly those who have had access
only to the abbreviated presentations available in English have been unsym-
pathetic. Some may have ceased reading before they have had an opportunity
to assess the functional value of the ideas embodied in the new principles. As
a result many real contributions contained within the manifold of Energetlcs
have been ignored.

* In order to distinguish reversibly transported (conserved) entropy from irreversibly pro-
duced entropy, as well as to distinguish reversibly absorbed heat from the non-compensated (irre-
versibly evolved) heat, Brensted uses, when necessary, single and double primes, respectively.
Thus:

Heat reversibly communicated Q' = 708’ (4)
Heat irreversibly evolved 6Q” = T68” (5)

This notation is adopted in the following text.

The significance of including terms for the irreversibly produced entropy or the non-com-
pensated heat of Clausius — which Brensted does in his ‘equivalence prineiple’ — was pointed
out in 1936. It has been stressed recently by Tolman and Fine10. See also Eckart 11,
Bridgman 12, De Donder and Van Rysselberghe 13; Prigogine 14 and Leaf 15.
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One of the objectives of this paper therefore is to show that the new postu-
lates are completely equivalent to the classical laws, but that they have in
addition certain valuable simplifying didactic merits. One of these is that the
new system focuses attention upon the physical structure of the concepts and
operations rather than upon the mathematical transformations.

Also, Energetics goes beyond Thermodynamics in furnishing a generalized
model concerning which a universal statement; namely, our rule of potentials
(see below) can be enunciated. This does not imply that more information is
obtained but only that a concise and unequivocal form of statement results.
Our original plans were to describe Bronsted’s system in the manner in which
he arranged it. Discussions with colleagues, as our manuscript took shape,
demonstrated that confusion resulted from a new terminology. This and, in
addition, the existence of a natural reluctance to hase conclusions upon new
postulates until their advantages are clearly evident. have led us to reverse
the procedure.

Thus, in this paper, we abstract and emphasize only those facts which
represent tangible contributions by fitting them into the established frame-
work of classical thermodynamics to be used as additional tools.* When the
reader becomes satisfied that the new treatment is fully equivalent to the
old, and through use becomes more confident in its power and simplicity we
hope he will be less reluctant to follow Brensted’s procedure and base all of
the reasoning on the new postulates thus achieving a further gain in didactic
simplicity.

To this end in what follows we have attempted to avoid objectionable
terminology, but have retained the advantageous features of the ‘spirit’ of
Energetics. They are listed in the chapter on assessment. In these respects.
much of what follows cannot be imputed to Bronsted alone.

CONCEPTS AND DEFINITIONS

A thermodynamic system is defined as a geometric region whose bound-
aries may be fixed or variable, and which may contain matter, or energy, or
hoth. The suitable description of such a system depends, in part, upon the
specification of the amounts of certain components known as the extensive
energy factors, which we shall call quantities, following Bronsted. Thus, it is
customary to say that the system possesses certain amounts of volume, sur-
face, matter, electric charge, entropy, moles of chemical components, efc.

* For discussions of the relationship between Bronsted’s Energeties and traditional Thermo.
dynamics see Rosenberg 16 and Holtan 17,
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Consider an isolated system, ¢. e., one which cannot receive quantity from,
or lose it to, the regions beyond its geometric boundaries. In addition, we
shall at first be concerned only with a system in which no chemical reaction
is occurring. Any infinitesimal variation which takes place within this system
is limited, either to the redistribution of quantity among its physically distinct
parts or to the production * of quantity within the system, or both. Call those
variations, associated with redistribution, éransport processes.

The comprehensive description of a thermodynamic system requires the
numerical specification of another set of entities, known as inmiensities or
potentials. In this set we include the familiar parameters, pressure, surface
tension, gravitational potential, electrical potential, temperature, and chemical
potential, efc., which the reader will recognize are each conjugate respectively
to the quantities above. During any infinitesimal change, involving the pro-
duction and redistribution of quantity the potentials remain, sensibly, con-
stant.

The transport of matter, charge, entropy, and moles of chemical constit-
uent, efc., between parts of the system requires no comment. The situation,
in respect to volume and surface, is much the same. However, it is worth
while to indicate clearly how these latter transports occur.

Imagine a box (Fig. 1) equipped with a movable partition (cross-hatched)
which separates two gases at the pressures p, and p,, respectively; p, > p,.

D2 > Py

<SS

o
AN

Figure 1.

The partition moves to the right, as indicated by the arrow, and the volume,
dV, originally on the right of the partition, appears on the left. In this sense,
the volume is transported from the region of lower pressure, p;, to that of

* The only quantity which can be produced, <.e., which is not conserved, is entropy, in irre-
versible processes. In the reversible case, entropy and thermal processes can be treated in
full conformity with other quantities and processes as emphasized by Bronsted.
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higher pressure, p,; i. e., the potential conjugate to volume is negative pressure.
Similarly, we can consider the transport of surface. Consider two films (Fig. 2)
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Figure 2.

having the tensions, y, and y,; y, > y,; which are distended between two fixed
wires (extremes) and a wire free to move as the films demand (center). The
center wire will move spontaneously to the left, as the arrow indicates, and
the surface, do, will be transported from left to right, from the region of
higher surface tension to that of lower.

THE BROXSTED PRINCIPLES DERIVED FROM THE FIRST AND SECOND
LAWS. THE NON-COMPENSATED HEAT OF CLAUSIUS *

Choose an isolated system which is not the seat of chemical reactions, and
divide it into localities, in each of which the potentials are uniform. By com-
bining the first and second laws of thermodynamics, we follow Gibbs and write
for the variation 8E, of the internal energy of the j* locality, during any
infinitesimal change:

O == TS — poV + pdo + Xudn; + @om + o de (4.1)

In Eq. (4.1) and in all of the following equations to (4.14) we have dropped, for
simplicity, the subscript § which should modify every symbol in these equa-
tions to specify that it refers to the j* locality.

* Since the non.compensated heat measures the amount of energy that becomes unavailable
as useful work in an irreversible process, and is zero for reversible processes, we prefer, for the
present, to emphasize this concept also for reversible processes rather than the Bronsted concept
‘loss of work’ (which is defined differently from the traditional work of thermodynamics).
The non-compensated heat as a measure for ‘loss of potential work’ has been emphasized by
Tolman (see Ref. 10 and patents cited there).
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Here T = temperature; p = pressure; y = surface tension
8 = entropy; V = volume; n, = moles of the " species
m = mass; & = electric charge; ¢ = surface

W = g; = chemical potential of a mole of the i species
i
@ == —Z% = gravitational potential of a gram of matter
yp = %1:;: = electrical potential of a coulomb of charge.
Now:

m; = n M, om; = M on,

& = nLF de; = Z,Fon,

X 0m; = om 2 de; = O¢

where M, is the molecular weight, Z; is the charge per molecule of the :**
species, and F is the Faraday constant.
Accordingly (4.1) can be rewritten as

8E = T6S — pdV + ydo + Z, (4, + M, ¢ + Z,Fyp)on, (£.2)

where the sum (u, + M,p + Z Fy) can be conveniently replaced by the
symbol 1, where 2, is @ general component potential for the i* species; e. g.,
in the electrical case (u; + Z;Fy) becomes the now well-known electrochemical
potential of Guggenheim ¥ which Brensted adopts and employs effectively in
treating galvanic cells® % % 1% 19, 20,

TSS represents the heat which could be absorbed by the locality if the
variation were conducted reversibly. In order to calculate 6F it is therefore
demanded that the additional terms in (4.2) which indeed represent work
terms, be those which would be obtained if the variation were conducted rev-
ersibly. In other words, p, y, and 4; must be equilibrium values. If we repre-
sent by 6@’ the heat which would be absorbed if the variation were conducted
irreversibly, then we have

768 — Q' >0 (4.3)

Accordingly, we write
T68 = 6@’ + T68" (4.4)

where, by virtue of (3)
.T68" >0 (4.5)
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in the irreversible case. In the reversible case equality exists for (4.5) and the
double primed quantity vanishes. The term 7'98” is the so-called non-com-
pensated heat of Clausius represented by 7Q”. while

0Q = T8 (4.6)

where 48’ is the entropy which is transported into the locality, through its
boundaries. 8S” represents the entropy produced within the * locality by
whatever irreversible phenomena are occurring there.

The variation of entropy, as ordinarily defined (no prime) is a sum given by

0 | Q"
68‘ == 68’ 68” == S 4.7
’ * /A ®7
For an irreversible variation in the j* locality, the first law gives

OF = 8Q' - - oW’ (4.8)

where W’ is the work performed by the locality upon its surroundings. Sub-
stituting for 6Q" we get

OF = TS - ToN" - oW’ (4.9)

Eq. (4.9) indicates clearly that the non-compensated heat 7'0S” represents

work which is potentially available provided that the variation associated with

0F is carried out reversibly. 6 and 68 have fixed values, being exact differ-

entials, independent of whether or not the change occurs reversibly.
Therefore, the sum of the residual terms

— Té8" - - 61" (+.10)
is fixed for the defined variation.

In the limit of reversibility, 68" is zero and consequently oW’ has its
maximum value. All of the non-compensated heat can be obtained as useful
work in this limit.

Now (4.7} is substituted into (4.2), vielding

8E = T8S' + TS"— pd1 -+ vdo + EAdm, (4.11)

for each j* locality.
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To compute the variation of the total internal energy of the isolated
system we sum over two types of localities. The first summation is over all
of the j localities. Now the system may also contain localities whose quan-
tities are invariant to any general change. Fixed weights or charges are exam-
ples. Eq. (4.11) cannot be used for the computation of the variation of the
energy connected with the transport of such quantities, since all of its differ-
entials are quantities, and consequently equal to zero. Instead

Ok, = mby, (4.12)

where ¢ is the gravitational potential and m is the mass, is suitable if we

deal with a weight, while .
oK, = &0y, (4.13)

is likewise suitable if we deal with an electric charge. Then the total variation
SE in the internal energy of the isolated system is representable as

8F = T8, + Zgmdg, + Ziedv, (4.14)

and can be set equal to zero since the system is isolated. Accordingly from
(4.11) we obtain (4.15)

+ Zymdg, + Zpedy, =0 (4.15)

This equation can be rearranged immediately as follows:

— I8, + EpdV, — Zy b0, — ZE,

12

on;; — Xm0,

1

— Zyeydyy, = X087 (4.16)

Since we have excluded the possibility of chemical reactions, all of the quan-
tities on the left in (4.16) satisfy the condition of conservation for reversible
processes in the isolated system. Thus:

I88; =0, IOV, =0, Epo, =0, Zdn; =0 (4.17)*

* Z‘,{SS,'- = 0 because 4S; is that part of entropy which is transported. Z0V; and X ;0a; can
always be set equal to zero by defining, if necessary, transports to and from regions of zero
pressure and zero surface tensions. Neither (4.15), (4.16) or (4.17) are affected by these transports
because the terms referring to those localities of zero pressure and surface tensions necessarily
have zero values. Z0n;; = 0 because we have excluded for the moment the possibility of chemical
reactions,

5
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A further rearrangement of the left terms of (4.16) can be effected in the
following manner. Consider the sum X;p,6V; and specialize for simplicity to
the case where it equals

POV 4 poV, - pgd ¥,y (4.18)
Then the isolated system is a box, similar to that used in Fig. 1, but having,

in this case (Fig.3), two movable partitions, separating regions having the
pressures p;. P,, and p,, respectively.

oY -4l

| ZI
1
PEI RY! P
t ! 2 HI
= = 3
= | = |
— 1 |
- : - |
s =N
ol Bl
Figure 3.
Now by the conservation of volume
8V, + 6V, + 6Vy=-0 (4.19)

It is apparent from figure 3, in which p; > p, > p,;. that

OV, = 6V + oV}
0V, = --6Vy >0 (4.20)
Vg = 8V, >0

f

so that (4.19) is satisfied. Using the notation of (4.20) we can write for (4.18)
the expression
POV — DOV, + P8 V3 — pso Vs
or (4.21)
Py — P2)OVy + (P — 23)O V",

In other words (4.18) is identical with a sum, each term of which consists of
the product of a potential difference, multiplied by the quantity which is
transported through the potential difference.
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By inductibn, this result is perfectly general, and can be applied to all of
the sums on the left-hand side of (4.16). We thus effect the complete rearrange-
ment, and write finally, the important equation: )

04 = X, 0K, (Pi(initial) - r(ﬁnal)) = Z,' Tj 53;-' =0 (4.22)

(4.22) is the analytical form of the combined Bronsted principles. The equality
applies to reversible processes, 7. e., the ‘work principle’, and the inequality to
irreversible processes, ¢.e., the ‘equivalence principle’. 6K, symbolizes a
transported quantity, while P, ;.. is the conjugate potential in the locality
from which and P, 4, the conjugate potential in the locality to which the
quantity is transported. 6K, is always greater than (or equal to) zero (see
Eqgs. (4.20)). The potential for volume always appears as negative pressure.

VIRTUAL CHANGES, COUPLING, AND THE RULE OF POTENTIALS

It is to be noted that all of the differentials in (4.22) are specified by the
symbol, 4, which designates a virtual variation. The term, virtual, implies
that the variation may be of the most general kind, and need not be physically
realizeable. Although some of the most important phases of thermodynamic
theory deal with the subject of virtual variations, very few authors have suc-
ceeded in presenting this subject clearly. Th- virtual variation is an important
adjunct of the Bronsted treatment and hence requires discussion.

Any displacement fron: equilibrium subject to the same constraints which
are imposed upon the system at equilibrium is, strictly speaking, impossible.
A real displacement can only occur by the alteration of one or several of the
constraints. In this sense, any displacement which a system in equilibrium
undergoes is a virtual displacement. Let us confine our attention to displace-
ments which are infinitesimal.

A system in equilibrium can experience two types of infinitesimal virtual
displacements. The first type involves a displacement, joining equilibrium
states (quasi-static), while the second involves a displacement which originates
in equilibrium and terminates in non-equilibrium. The former is the assymp-
totic limit of some real process, while the latter has no basis in reality
whatsoever. ' ’

The reader is undoubtedly familiar with many specific examples of quasi-
static processes. Examples of this type will be given in the chapter on
these processes.

For a concrete example of a non-quasi-static displacement, consider a
liguid drop, in equilibrium, surrounded by its vapor. It would be impossible,
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unless the system were severely altered, to transport isothermally dn moles
of the drop to the region of its vapor without, at the same time, transporting
some of its volume and surface area. On the other hand, there is nothing to
prevent us from imagining the physically impossible transport, during which
the drop simultaneously dilates, so that its volume and surface area remain
constant. It is evident that this would represent a displacement passing from
an equilibrium to a non-equilibrium state.

In order to obtain a clear understanding of the usefulness of the method of
virtual displacements, it is absolutely necessary to have a broader definition
of a ‘thermodynamic state’ than the one ordinarily given. Usually a ‘state’
means an ‘equilibrium state’ whose reproducible properties can be described
by a minimum number of macroscopic parameters. Any function of state.
e.g., the free energy, has these parameters for argumen‘s.

In a larger sense, a state can be defined as any reproducible condition of
a system, either in equilibrium or in the process of change. A non-equilibrium
state will, in general, require a larger number of parameters for its description
than an equilibrium state. In the extreme case the dynamical specification
of every microscopic particle in the system may be required. In any event.
any function of state, . g., the free energy, will depend upon a larger number
of variables, but will remain a defined function. From the operational point
of view, an equilibrium state then becomes a special kind of state defined by
the minimum number of parameters. It can be represented by a point in
‘state-space’, 4. e., the space whose coordinates are the parameters defining the
state in the most general sense. '

An infinitesimal displacement from equilibrium is represented by an in-
finitesimal path in ‘state-space’ originating at the point of equilibrium. A
number of these paths will satisfy the condition that the temperature and
pressure remain constant along them. It is a classical criterion of equilibrium
that for an infinitesimal displacement along any one of these isothermal, iso-
haric paths the Gibbs free energy of the system remains unaltered. This free
cnergy is understood to be defined in the larger sense, so that it remains a
defined function of a non-equilibrium state. For the application of this cri-
terion, it is inconsequential whether the displacement is or is not quasi-static.
All that is demanded is that it be infinitesimal and that it originate in equi-
librium. In particular, it may be of the type illustrated above in connection
with the splerical drop.

The point that wany fail to grasp is that one does not seek information
about the condition of the system along the path of the infinitesimal displace-
ment but only about the condition at the origin of the path. Others have difficulty
in coneceiving the significance of the free energy along a non-quasi-static path
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because the description of a ‘state’ as an equilibrium state has been over-
emphasized. ' B

The Gibbs free energy has been chosen as an illustration because of its
familiarity. However, all of these implications concerning virtual variations
can be transferred in full to Brensted’s ‘work principle’, (Eq. 4.22), when
employed as the criterion of equilibrium. This equation (like other criteria)
imposes the demands of thermodynamics upon a system in equilibrium. Very
often, however, certain extra-thermodynamic conditions are imposed upon
the behavior of the system. When this is true, all of the virtual displacements
must be consistent with these conditions.

For example, return to the consideration of the drop. We may impose an
extra-thermodynamic condition upon the system represented by the drop and
its vapor, namely, the geometric condition which specifies that the transport
of volume from the drop to the vapor must occur in such a manner that the
spherical shape of the drop is retained. It is then not permissible to carry out
a virtual variation during which the volume, 8V, is transported without the
simultaneous transport of the surface, dg, because both are connected by the
geometrical relation

OV = 8o | (5.1)

where r is the radius of the drop.

The equality and inequality (4.22) represents a compact and extremely
useful expression of the laws of thermodynamics. In addition, it furnishes a
very satisfying model for the internal behavior of a thermodynamic system.
These contentions shall be demonstrated 1n detail.

From the nature of the rearrangement (4.22) it is clear that the potentials
conjugate to the different quantities ave, in order:

quantity potential
volume negative pressure
entropy temperature
surface surface tension
moles of chemical

components component potential *
mass gravitational potential

charge - electrical potential -

* Note that we are replacing the ordinary Gibbs chemical potential u by the more general
component potential A defined in the chapter on the derivation of the Bronsted principles.
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In mechanics and field theory, potential has the significance of determining
the direction of change. That this significance is retained, unaltered, in the
above table can easily be shown.

To do this, consider a system undergoing a virtual change which consists
of a single transport, such that all of the terms on the left of (4.22) with

the exception of one, K (P, suipia)) = Psinay), are zero. Then (4.22) reduces to
04 = 0N (P initia)y — Prginay) = £ T98] > 0 (5.2)

[n (5.2) as in (4.22) the inequality corresponds to a natural irreversible change,
¢. e., one which does occur spontaneously, and the equality corresponds to a
reversible process, i.e., to a displacement of a system in equilibrium. Since
0K, is arbitrary and positive, it follows that the expression in brackets (poten-
tial difference) is positively different from zero when a real change takes
place. Finally, we observe that the potential difference is zero when no change
takes place (when the system is in equilibrium). Therefore, a finite difference
of potential bears a one-to-one correspondence to change, while no potential
difference corresponds to no change. For this reason, potential difference may
be regarded with complete consistency as the iotivating factor for change.
Taking account of the subscripts (initial) and (final) in (5.2), it is to be observed
that all quantities tend to move from a higher to a lower potential. These
conclusions which we have derived from the laws of thermodynamics, Brensted
introduces as observations of experience to justify the reasonableness of his
principles.

The form (5.2) was achieved by restricting the virtual change to a single
transport. But suppose this is not possible, as in the example offered previ-
ously, concerning the volume and area of a spherical drop. In that case, the
quantities volume and area were coupled together so that the movement of
one demanded the movement of the other. For such a case, the form (5.2)
could not be achieved. Then it could not follow that the potential differences
conjugate to the coupled quantities would be required to be zero at equi-
librium.

We are thus led (quite rigorously) to a general rule which we shall call the
rule of potentials, namely, that all potential differences necessarily vanish at
equilibriwm except those corresponding to conjugate transported quantities which
are coupled to other quantities. In particular, since chemical components are
never coupled so as to defy an individual virtual transport, the component
potential A, corresponding to the i species is identical in every locality when
equilibrium has been attained.
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In the usual presentation of thermodynamics the rule of potentials enun-
ciated above can only be proved by inventing a suitable characteristic function
for each case and by setting in motion the machinery of the Lagrange method
of undetermined multipliers. In the current presentation it has been obtained
rigorously and in a single stroke by utilizing a satisfactory physical model for the
thermodynamic system in which constraints can be described in terms of
bonds; ‘coupling’.

This result constitutes part of the evidence for the contention that (4.22)
is a compact and useful expression of the laws of thermodynamics and that it
furnishes a good model of thermodynamic behavior. We will now proceed to
examine the beautiful and consistent description which it provides for the
state of internal equilibrium when ‘coupling’ exists.

A MODEL FOR INTERNAL EQUILIBRIUM

When coupling exists, the potential differences conjugate to the coupled
quantities are not necessarily zero. If we write (4.22) for the process involving
the reversible transport of these quantities, we retain only the equality, and
bave:

2 OK(P, uitiayy — P )=0 (6.1)

coupled

7 (final)

Physically, the situation in (6.1) can be described as follows. Each of the
coupled quantities is invited by its conjugate potential difference to move,
but the movement of one quantity, in the direction specified by its conjugate
potential difference, compels (because of the bonds between quantities) other
quantities to move in directions opposite to those specified by their own
potential differences. At equilibrium, all of the opposing tendencies balance
and this is signified by the condition (6.1).*

TREATMENT OF QUASI-STATIC PROCESSES

In the first place, it is to be noted that a quasi-static displacement is one
along which the system remains in equilibrium. Consequently, all of the
potentials in the system are subject to the restrictions of our rule of potentials.
In addition, since a quasi-static displacement has a limit-basis in reality, we

* This model of equilibrium (i. e., coupling between basic processes) was applied in
Bronsted’s last monograph® to the treatment of the reversible aspects of steady staet pro-
cesses; e. g., in the thermoeclectric cell he utilizes the coupling between & mole of electrons
and the entropy associated with it. Similar procedures were employed for the gas transpira-
tion cell.
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shall consider it formally to be a real change and accordingly employ the
symbol d rather than § to symbolize differentials.

The reversible expansion of a gas

Consider a gas (Fig. 4) having the pressure p,

vacuum

dav m dh

Figure 4.

separated from a vacuum by a partition upon which a weight, m, rests, which
is almost but not quite heavy enough to maintain equilibrium. The containing
vessel is surrounded by a reservoir of temperature, 7. The isolated system
which we need to consider consists of the reservoir and the container plus its
contents.

Under the prescribed conditions, the partition will move upward the
distance d2 and the volume dV will be transported from the vacuum to the
pressure, p. Corresponding to this transport the loss of spatial potential work
is given by

dA ., = (0 - p)dV = pdV (7.1)

spat

There is an accompanying loss of gravitational potential work
dA,., = [gh — g(h + dh)] m = — mgdh (7.2)

There will also be a flow of entropy between the reservoir and the gas. The
variation is quasi-static and the rule of potentials can be applied. Since there
is no extra-thermodynamic relation coupling the transport of entropy to other
processes, it follows that the potentials conjugaie to the entropy, <. e., the
temperatures are the same in the gas and in the reservoir. For the thermal
loss of potential work we obtain

dA, =0 (7.3)

therm
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However, there is an extra-thermodynamic, geometrical relation between
dV and dh, and thus the spatial and gravitational processes are coupled. This
is consistent with the rule of potentials; the corresponding losses of potential
work do not have zero values.
Upon substitution of (7.1), (7.2) and (7.3) in the equality of (4.22), we
obtain the result
pdV — mgdh = 0 (7.4)

Brensted has commented upon the fact that it is custom;ry’ to regard the
motivation of the quasi-static process just described as originating in the
reversible flow of heat from the reservoir to the gas, or what amounts to the
same thing, in the transport of entropy. He points out that it is more con-
sistent to regard the transport of volume as the motivating factor since it is
here that a finite potential difference exists (see Eq. (7.1)) and because we
have considered a potential difference to be the motivating factor for change
(see the chapter on virtual changes).

Carnot cycle — Coupling of thermal and
mechanical basic processes

As an important example of the direct use of the equality in (4.22) we give
Brensted’s treatment of the reversible Carnot engine. Let the heat absorbed
by the engine at the upper temperature 7', be D@, = T'; dS and that rejected
at, the lower temperature 7T, be 0@, = T, dS:

D9, _ D@,

S = =
d i, 7,

(7.5)

* The thermal process in the heat engine thus consists in the reversible transport
of an amount of entropy dS between the temperatures T, and T,. The revers-
ible mechanical work dA obtained from the engine may consist in the transport
of a weight m from a lower height % to a higher height & + dh: dA,,panicat =
—mgdh. In any case. regardless of the nature of the mechanical work, (4.22)
gives:

(T, — T,)dS -+ dA =0 (7.6)

mechanical

or, introducing (7.5):

; ‘ T,—T
(lAmeclxanical) = DQI I

T (1.7)
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To be consistent, the driving force may be considered to originate in the ther-
mal process, ¢. e., the tendency of the entropy to go from the higher to the
lower temperature. Since this process is coupled and balanced through the
engine to a mechanical process, it can only occur reversibly through the simul-
taneous performance of mechanical work.

The reader is referred to the original articles? 7 for Bronsted’s objections
to the (lausius’ interpretation of the Carnot Cycle.*

THE GIBBS-DUHEM EQUATION

In treating problems of equilibrium, it is often necessary to have a differ-
ential relation which connects the real variations (symbol d) of the different
. potentials, rather than the extensive properties in a given phase. The general
relation, which we shall call the generalized Gibbs-Duhem equation, has the
following form:

SdT — Vdp + Emndi;, = 0 (8.1)

Equation (8.1) can be obtained in a simple and straight-forward manner by
applying the equality contained in (4.22) to a selected reversible transport.

Consider a phase whose potentials are specified by the pressure, p, the
temperature, 7', and the component potential for the i* species, 4,. Consider
another phase, having the potentials p + dp, T -+ dT, and A; + di;, which
contains the same chemical species as the first phase. Now, combine these two
phases in a rigid, adiabatic shell, so that they form an isolated system. Since
the potentials in the two phases differ infinitesimally, the transports which
now occur do so reversibly. We can thus apply the equality contained in
(4.22) to these transports.

(T +dT) -T|dS + [p-—(p+dp)] dV + £, [(3, + dA) — 4] dn, =0  (8.2)

or

dSdT - dvVdp 4 X, dndi, = 0 (8.3)

This equation places no restriction upon the amounts of quantity dS, dV and
dn; which are transported, since there is only one dependent variable and we
can always choose this to be one of the potential differences, i.e., dT, dp or
dA;. By suitably adjusting the amounts of quantity, originally present in the
two phases. it is always possible to adjust the transport so that:

* See, also: V.K.La Mer, ‘Some current misconceptions of Carnot’s Memoir and Cycle.’
Paper read before American Physical Society, Jan. 29, 1949; to be published in Am. J. Phys.
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s :dV :dm, = 8:V :n (8.4)

Here S, V. and », are the quantities in the first phase. This means that the
quantities, transported combine to form a replica of a portion of the first
phase. Because of (8.4). (8.2) can be multiplied by a constant to yield (8.1),
which is the generalized Gibbs-Duhem equation for the first phase. Since the
first phase was arbitrary, (8.1) is applicable to any phase.* ’

The derivation of (8.1) is again an illustration of the compactness and use-
fulness of (4.22). In the usual presentation of thermodynamics, it is necessary
to invent a function of state and to apply Euler’s theorem for homogeneous
functions before (8.1) can be derived.

TREATMENT OF EQUILIBRIUM

We are now in position to apply (4.22) to the solution of problems of equi-
librium. In a sense, we have already partially solved every conceivable pro-
blem of internal equilibrium by the use of (4.22), since we have been able to
arrive at the conclusion that the component potentials are uniform throughout
the system when equilibrium has been attained. To obtain a more tangible
and comprehensive description of the interior of a system at equilibrium, we
have only to proceed from this point by the usual methods of thermodynamics
taking account of the manner in which the component potentials are related
to the other parameters which determine the state of a given locality.

" However, we have not exhausted the utility of the equality in (4.22) for
in many cases it yields an immediately useful result over and above that
pertaining to the equality of the potentials. As an example, compute the
difference in pressures inside and outside of a drop having the radius, ». Choose
for the isolated system the drop surrounded by its equilibrium vapor contained
in a rigid, diathermic shell which is placed in a thermostat. Since the tem-
perature is everywhere uniform, the terms referring to the transport of entropy
vanish from (4.22). The same, of course, is true of the transport of material.
Writing the equality (4.22) for the transports attending the transport of moles
of material from the drop to its vapor, we find that only the terms correspond-
ing to the transport of the ’coupled’ quantities volume, ¥, and surface,
dc, can have non-zero values. This follows from the rule of potentials. We
thus have for (4.22):

— (py—p) OV + (y —0)ba =0 (9.1)
* Qur use of the equality (4.22) for the derivation of the gencralized Gibbs-Duhem equation
is slightly different from that of Brensted 5.
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Here p, is the pressure of the vapor outside the drop, p, the pressure inside the
drop, 0 the surface tension of the hypothetical surface in the vapor, and y
the surface tension of the vapor-drop interface. Substituting (5.1) into (9.1)
the familiar formula of Kelvin. specialized to a sphere. follows immediately.

Py ey = L (9.2)

CHEMICAL EQUILIBRIUM

Thus far, systems in which chemical reactions occur have been excluded
from consideration. This was done as a matter of convenience only, and does
not represent any fundamental insufficiency of the Brensted treatment. The
inclusion of the chemical reaction as a possible source of variation necessitates
the introduction of a slight modification in Eq. (4.16).

The rearrangement of (4.16) to yield (4.22) is no longer valid since any
particular type of molecular species entering into the reaction is not conserved.
It is possible to modify (4.16) so that in place of the mole numbers the numbers
of atoms of particular kinds contained in a particular molecular species in-
habiting a given phase serve as parameters. It is also possible to use the
masses of the various molecular species in this connection. Both atoms and
mass are conserved even in the presence of a chemical reaction, and so a rear-
rangement of the desired type is possible.

However, it is more expedient, for chemical purposes, to define a pseudo
quantity da. which is also conserved. Let », and », be the stoichiometric
coefficients of the " reactant and p™ -woduct in a given chemical reaction of
the type:

2R, = Xv P,

where R, and P, are the molecular symbols of the /" reactant and p™ product.
Let v, and », both be positive. Then *

on,

(SaR s r ft)l' a:ll r (10‘1)
dn

oap = V‘D for all p (10.2)
4

* It will be notes that ap, but not ay is the degree of advancement of reaction employed
by De Donder.
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From stoichiometric considerations, it is evident that
dap -+ dap = 0 _ (10.3)

For simplicity let us restrict our attention to a system in which the miole
numbers are varied by a single chemical reaction confined to a single phase.
This result can be generalized easily, as the occasion requires.

Then the term, in (4.18), — X.X4,0n;, reduces to — XA .on; and by
virtue of (10.1) and (10.2) this becomes

— @Ayl + X Ao, (10.4)
or

- (6aR2,l,'V, —‘I" 6apzMﬁ1’P) (10.5)

and by the use of the new conservation condition (10.3), we obtain the form

— (ZAy, — ZAw)dap (10.6)

If we define ‘
lp = E}'Pvﬁ (10.7)
Agp = 2y, (10.8)

as ‘system potentials’ for the pseudo-quantity deap, (10.6) indicates that the
form (4.22) can be extended to chemical reactions.

Indeed for any reaction proceeding isothermally and isobarically, the
work principle now demands that at equilibrium

(Ag —Ap)bap = 0 (10.9)
or that the ‘system potentials’:
dg = Ap (10.10)

(10.10) yields the law of mass action when the individual potentials are sub-
stituted.

In closing, it is to be noted that the pseudo-quantity can be used as a
measure (on stoichiometric grounds) of the rate of transport of the real quant-
ity, mass, from reactants to products.
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IRREVERSIBLE PROCESSES

The inequality contained in (4.22) provides a direct means for computing
the production of non-compensated heat during an irreversible process, pro-
vided that the transports involved are recognizable and that the irreversible
process conducts itself in such a way that each stage can he described hyv what
are sensibly equilibrium parameters.

We shall consider one example of this type. A single thermostated phase,
the seat of a chemical reaction. but nevertheless in mechanical and thermal
equilibrium, represents a system satisfying the requirements just mentioned.
The only transport having a non-zero term will be that corresponding to the
transport of the pseudoquantity dep. The system is out of equilibrium so that
entropy is bheing produced. Eq. (4.22) then reduces to

()"R ;.,>)tlap = ,J’lll"” (11.1)

If we divide by dt and define the velocity of the reaction. v. as

dap
Y 11.2
v 7 (11.2)
we obtain
. A T dS” ' 113
(Ag — Ap)v — 1 Tt (11.3)
or
’[IS” (;'R e 2}.\)
e T . 11.4
dt T ' ( )
a result given by De Donder.
ASSESSMEN'Y

The favorable points for equation (4.22) follow:

(@) It provides a satisfying model for the internal behavior of an isolated
thermodynamic system.

(b) It leads simply and with a minimum of mathematical expenditure to a
simple rule of potentials. As a corollary, the general result asserting
that the component potentials are uniform at equilibrium is obtained.
In the classical discipline the concepts and ideas are not available to
make such a concise universal statement.
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(¢) The generalized Gibbs-Duhem relation is obtained with a minimum of
mathematical expenditure.

(d) In cases of coupling (4.22) leads to an immediately useful result, con-
cerning the features of equilibrium in a system where the coupling
phenomena exist. By this it is implied that properties, other than the
fact that the component potentials are uniform, are described.

(e) In some instances (4.22) affords a direct means of calculating the non-
compensated heat evolved in an irreversible change.

Finally, we do not assert that (4.22) is the most convenient form for all
thermodynamic purposes. Attention is always focused upon an isolated
system, which means any system of physical interest plus its environment.
In this way some of the detachment which is gained by defining thermo-
dynamic potentials which are functions of the state of some particular non-
isolated system is lost. However, by combining both methods of attack,
fruitful results are obtained.

SUMMARY

A brief exposition of the salient features of Bronsted’s Energetics is given.
The complete equivalence of his basic postulates, namely, the ‘work’ and the
‘heat and equivalence principles’ in respect to the two laws of classical thermo-
dynamics has been demonstrated by deriving his postulates from these laws.
Some of Brensted’s fundamental conceptions, e. g., the existence of a potential
difference as the motivating factor for the occurrence of a basic process,
balanced coupling of basic processes to produce reversible processes, the
localized production of entropy in irreversible processes, efc., emerge as neces-
sary consequences in this derivation.

The compactness and elegance of Brensted’s approach are illustrated by
simple examples using his ‘work principle’ and a new rule of potentials given
by us. An assessment of the merits of the system is included.

BIBLIOGRAPHY

1. Brensted, J. N. Physical chemistry. London and New York (1937). Translated from
the first Danish ed. (1936) by R. P. Bell.

. Bronsted, J. N. Kgl. Danske Videnskab. Selskab Medd. 15 (1937) 4.

. Bronsted, J. N. Kgl. Danske Videnskab. Selskab Medd. 16 (1939) 10.

. Brensted, J. N. Phil. Mag. 7 (1940) 449.

. Bronsted, J. N. J. Phys. Chem. 44 (1940) 699.

. MacDougall, F. H. J. Phys. Chem. 44 (1940) 713.

S Ov e W



1262 LA MER, FOSS AND REISS

7.

8.

Bronsted, J. N. On the concept of heat (in English). Kgl. Danske Videnskab. Selskab
Medd. 19 (1941) 39, 41.
Bronsted, J.N. Fysisk Kemi. 2nd ed. Copenhagen (1943).

9. Bronsted, J. N. Principer og Problemer i Energetiken. Kobenhavns Univ. Festskrift.

10.
11.
12.
13.
14.

15.
16.

-

i

18.

Copenhagen (1946).

Tolman, R. C., and Fine, P. C. Rev. Mod. Physics 20 (1948) 51.

Eckart. C. Phys. Rev. 538 (1940) 267, 269, 919.

Bridgman, P. W. Phys. Rev. 58 (1940) 845; The nature of thermodynamics. (Harvard
Univ. Press) (1941) pp. 133 —147.

De Donder, Th., and Van Rysselberghe, P. Affinity. (Stanford Univ. Press) (1936)
esp. p. 9.

Prigogine, 1. Htude Thermodynamique des Phenomenes Irreversibles. Liege (1947)
esp. pp. 1 and 2.

Leaf, B. .J. Chem. Phys. 12 (1944) 89.

Rosenberg, T. H. Fysisk Tidsskr. 41 (1943) 1.

Holtan, H. Tidsskr. Kjem. Bergv. Met. 8 (1948) 12,

Guggenheim, E. A. J. Chem. Phys. 33 (1929) 842; Moudern thermodynamics. l.ondon
(1936) chap. 10.

19. Bronsted, J. N. Z. Physilkal. Chem. A 143 (1929) 301.
20. Brensted, J. N. On the definition of the Gibbs potential (in English). Kgl. Danske Viden-

skab. Selskab Medd. 12 (1933) 6.



