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large and growing mass of data from several different experimental
fields has been obtained about the dimensional details of molecular structures.
- To co-ordinate and to make the best possible use of this information, it is
necessary to free the results of any systematic errors, to estimate the random
‘errors, and to subject any metrical interpretations or comparisons to standard
statistical tests of significance. The present paper describes how to treat the
results of electron diffraction investigations; its approach to the problem of
accuracy has had two sources. A similar theory of errors has been discussed in
X-Ray Crystallography by Cox and Cruickshank?!, and Cruickshank 2; these
papers contain a full discussion of the details of the problem, and give the
references to those authors who have contributed to its solution in X-Ray
Crystallography. On the other hand Finbak, Hassel and co-workers in a
number of papers?® have applied Fourier Analysis in the sector method of
electron diffraction, and Viervoll ¢ has shown the use of the method of differ-
encing experimental and theoretical ¢,(r) curves in eliminating diffraction

effects, searching for light atoms and guarding against anomalies.
In the electron diffraction of gaseous molecules interatomic distances may

be obtained from the radial distribution functions ¢, (r), Im(r) or D, (r) which
T

are related by o,(r) = 4#(r)2D,(r). The functions ¢(r) and g(i) defined by
‘ r

equation (17) of Viervoll’s paper ¢ are also used. For definiteness our discus-
sion refers to ¢,(r); similar remarks apply, however, to the other radial

L,,(s)

distribution functions. o,(r) is obtained from the function e which is
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found experimentally, I,,(s) being an intensity varying with s = ‘_1; sin 6.

(A = wave length of electron beam; 2@ = scattering angle.)

(e 0]
2r (1,(s)
1

6,(r) = __f_"}(_ 85 sin sr ds (1)

0

POSITIONS OF THE MAXIMA

In numerical calculations as an alternative to using o,(r) the positions
of the maxima may be found from the zeros of the function which is the slope
of a,(r) (as after Booth 5 in X-Ray Crystallography). As slope functions are
also needed in estimating the accuracy of the positions of the maxima, it may
sometimes be convenient to calculate them directly e. g.

© 0

d [o,(r) d 2 1) 5 . 2/‘[ (s) .

- Lid = —_— " d = — ———m 8 2

o ( - ) Pl 83 sin sr ds ~ T s® cos sr ds  (2)
0 0

The curvatures of the peaks at the maxima, which are also needed in
accuracy estimations, may be found from the slopes of the slope functions.

CORRECTION FOR FINITE INTEGRATION

The finite range of integration (s, to s, instead of 0 to o0) gives rise to
systematic errors known as diffraction effects, after the name proposed by
Bragg and West ¢ for the similar effects occuring in the Fourier maps of X-Ray
Crystallography. The diffraction effects take the form of ripples which create
false peaks and shift the positions of the real maxima. By the use of ‘normal
curves’ which represent the distribution function for a single inter-atomic
distance with diffraction effects, Viervoll ¢ has developed a method for detecting
the spurious maxima and for correcting the positions of the displaced maxima.

When provisional interatomic distances have been obtained directly from
the experimental radial distribution curve, the correction for finite inter-
gration may be made in the following manner. By taking a complete set of
‘normal curves’ we may obtain a theoretical g,,(r) for a molecular model based
on these provisional distances; this theoretical o,,(r) will be found to have its
maxima slightly displaced from the assumed positions due to diffraction effects.
Since the maxima of the experimental o,,(r) are obtained from a curve with
diffraction effects, their correct positions, without diffraction, are obtained
by reversing the displacements found in the theoretical ¢,,(r). Provided these
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shifts are small it is unneccesary to repeat the process with the theoretical
0,,(r) based on the (once) corrected positions.

As appears from the discussion on p. 129 of Viervoll’s paper ¢, even with
an infinite range of integration the inter-atomic distances are not exactly given
by the maxima of ¢,,(r). The preceeding method automatically allows for this
also. When the maxima corresponding to two different inter-atomic distances
are not resolved, the distances must be estimated by »fitting» the normal curves
to give the best agreement. A discussion of the conditions of validity of the
similar procedure in X-Ray Crystallography, first proposed by Booth 7 8 is
given in § 10 of Cruickshank’s paper 2.

RANDOM ERRORS

The distances now obtained are the final estimates, and are in error due to:

1) Inaccuracies in correction for finite integration.

2) Errors in I,(s).

3) Approximation errors in calculation.

There may also be an additional error due to an error in the linear scale
of the intensity diagram. (In X-Ray Crystallography this corresponds to
errors in the cell dimensions.) This error is usually negligible in comparison
with those mentioned above, but if it is not, an estimate must be added sta-
tistically to the other errors.

On the assumption that the effect of the errors 1)—3) is that of many small
random errors (as must for instance, occur in the determination of I, (s) over
a large range of s), the errors in the inter-atomic distances have a normal
(Gaussian) probability distribution. We shall now show how to estimate the
standard deviation of these errors.

The problem cannot be treated in the same way as the corresponding one
in X-Ray Crystallography, discussed in § 11 of Cruickshank’s paper 2. In that
case estimates were sought of the errors in the electron density of a finite unit
cell due to small errors in a set of discrete intensities; we are now seeking to
estimate the errors at different points of a radial distribution function of
infinite extent due to small errors in a continuous intensity function. Two
points may be noticed at once. The errors in ¢,,(r) depend on r and they must
tend to zero as r tends to infinity. The usual range of observation of s is
sufficiently large for the root mean square difference of the theoretical and
experimental intensities to be a reliable estimate of their r. m. s. error, and
hence in a sufficiently large range of r the r. m.s. difference of the experi-
mental and theoretical slopes of o¢,(r) is a reliable estimate of the r.m.s.
error of the slope in that range of 7.
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This suggests the following procedure. Let y(r) be the difference between
the theoretical and experimental slopes of ¢,,(r). %(r) will be found to oscillate
irregularly as in Fig. 1. Draw a smooth curve p%(r) (indicated by the dotted
line) such that in any sufficiently large range of » its mean value is equal to
the mean value of p*r) in that range. Then the estimate of the standard
deviation of the slope of ¢,,(r) is p(r).

One obvious difficulty is to decide on the length of the ranges of r to take
in finding p(r). They must be long enough to give reliable estimates of the
r.m,s. error in that range, yet short enough to show variation with ». We

suggest (arbitrarily) that ranges of length 4_ﬂ should be used, so that p%r)
Sa

should be close to the mean value of 9%(r) in the range length 48_” centred at this
r, and that no value of y%(r) should exceed three times the corrZsponding value
of p?(r) (a position of very large ?(r) either indicates a position of large error,
or, more likely, an anomaly e. g. the effects of hydrogens atoms not considered
in the theoretical o,(r).) If there is any doubt as to the value of p*(r) it is
wise to err on the safe side and to use an upper estimate.

By this consideration of the difference between the slopes of the tl:eoretical
and experimental ¢,(r) we have estimated directly the effects of the experi-
mental errors in I,,(s), the approximation errors in calculation and any in-
accuracies in the correction for finite integration.

p()

The estimated standard deviation of an inter-atomic distance is =_-L

where 4 is the curvature of the peak of the o,(r) diagram which gives the
distance. When by the symmetry of the molecule several inter-atomic dis-
tances are related to one parameter, the standard deviation d of the weighted
(i. e. inversely as the squares of the deviations) mean estimate of the parameter
is given by

1 1, L)
R - Y
where d;, . .. d, are the standard deviations of the various determinations of

the parameter.

AN EXAMPLE OF THE ESTIMATION OF STANDARD DEVIATIONS

The procedure will be illustrated by the structure determination of CBr,,
Fig. 1. The intensity I,,(s) was in this case measured from s; = 5 to s, = 16;
the corresponding experimental o,,(r) curve being shown in the upper part of
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Fig. 1. Determination of standard deviation from the experimental o,(r) curve of CBr,.
exp. Op(1). ——— wormal curves», & Y2(r), — = p2(r).

Fig. 1. The dominating peak at r = 3.174 A gives the Br—-Br distance. The
‘normal curve’ of this distance is shown by the dotted curve, N,. By subtract-
ing the function N, from the experimental ¢,,(r) function we obtain a differ-
ence function in which the diffraction ripples of the Br—Br distance have
been removed. This difference function has its most pronounced maximum at
r = 1.960 A which gives the C—Br distance. The corresponding ‘normal
curve’ is shown by the dotted curve Nj.

By subtracting the functions N; and N, from the experimental o, (7)
function, we obtain a difference curve the slope of which isy(r). The irregular
oscillation of y2(r) is plotted as dots in the lower part of Fig.1. The curve
p%(r) has been drawn as the mean value of () in a range length approximate
to {n

16

From these curves we obtain the following estimation of the standard
deviations of the two distances:
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C—Br: pzm =14 x10° A2 = i%il =0.0183 A
s - .
AL A =2.04 X 10% A?
Br—Br:  pr) =23 X 10° A & — %ZE — 0.0065 A
ey 4 = 7;54 X 10t A2

If we now assume the molecule to have tetrahedral symmetry, we obtain
from the Br—Br distance the following value of the C—Br distance:

3174 X Vi =1944 A d,=0.0065 X }/'§ == 0.0040 A

d. \2
The ratio (—d—l) = 21; by weighting the results by this factor we get the
2

final estimate:
C—Br: 1945 A; d =0.0039 A

TEMPERATURE FACTORS AND THE METHOD OF LEAST SQUARES

1t is often necessary to multiply the theoretical intensity by a temperature
factor to get agreement with the experimental data, and thus to make the
heights and forms of the experimental and theoretical ¢,,(r) peaks the same.
When this is done the corrections for diffraction should be estimated from
normal curves which allow for the temperature factor; the same normal curves
should be used to find y(r).

Similarly if an artificial temperature factor is applied to the experimental
I,.(s) to reduce the diffraction effects, it should also be applied to the ‘normal
curves’. It is sometimes found that the use of an artificial temperature factor
not only reduces the diffraction effects but also the estimated random errors
in the inter-atomic distance. To understand this we consider the method of
least squares.

Let I,,, and I, denote the experimental and theoretical intensities, and
let w(s) be the weight given to the intensity at any s. According to the method
of least squares the best estimates of the inter-atomic parameters E; are those
for which the function L is a minimum

Sg

L sz Leep. — Iy)? ds ()

$
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‘ oL
1, being calculated for the parameters E;. When L is a minimumfsjz = 0.
Hence
: d]
i
fot -1 o »
$
Now
dl, mK (Z,—F)(Z,—F) d sin sRy (5)
arR; st dR; sR;
m being a multiplicity; Lence, dividing by mK?
Sg
f (Z; — F)(Z; — F) l:sm SR, :II .
Kst dR; sRi; T
$1 o
o (Z,— F)(Z;,— F) sin SR :I .
= : . I, d 6
f Ket dR,, sRy a €6 )
&
t. e. the slopes at R; of
Sy
2 (w(Z,— F)(Z,— F,) sin sr
Wnp.(r) = ;f KS4 ! ! Sr Iexp. ds (7)
8y
and 8y
2 fw(Z,—F)Z —F) sin sr
Wo(r) = ;;f Kol ! : P I, ds (8)
8y

are equal. We may regard W(r) as the D, (r) obtained by using an artificial
temperature factor ¢ = S0 [Z —F,;) (Z—F,)]. The function w(s) must be

determined from a study of the differences in /,,, and I,, and cannot be pred-
icted entirely on theoretical grounds. By the very purpose of the least squares
method ¢ is the temperature factor which gives the least error in the deter-
mination of R ; it does this because it weights the intensity according to its
reliability for different s. The use of other artificial temperature factors is
quite valid, but they will lead to less accurate results, their accuracy depending
on how closely they resemble a. In each case the errors will be those estimated
by the methods described above. If the F’s of the different atoms are not
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proportional several different W (r)’s will be needed to get the best estimate of
all the parameters, though probably little accuracy will be lost by using the
same « throughout.

We may notice that when nearly correct parameters have been obtained
from ¢,,(r) it is possible to express approximately I,,(s) as a linear function of
the parameters. By doing this the usual ‘normal equations’ of the least
squares method can be found and solved. When the maxima are well resolved
the least squares method leads to the same results as those given by W,,, (r),
corrected for diffraction effects. But when some of the maxima are not resolved
it may be preferable to use least squares. (A similar connection in X-Ray
Crystallography between the Fourier series and the least squares method has
been pointed out by Cochran?®.)

SIGNIFICANCE TESTS

For valid comparisons to be made of experimental determinations of inter-
atomic distances in molecular structures, or between experimental and theo-
retical results it is necessary to use statistical assessments of significance based
on the estimated errors. Details of the application of significance tests to the
comparison of bond-lengths will be found in Cruickshank’s paper 2; a general
outline of the problem is given in § 3, and an example in § 15, where the com-
plications which occur when the errors in two bond-lengths are dependent, are
also discussed.

SUMMARY

Methods of correcting the systematic errors of finite integration in the
radial distribution functions of electron diffraction are discussed. A method is
given for estimating the standard deviations in inter-atomic distances, due to
random errors caused by experimental errors, approximation errors in calcu-
lation, and any inaccuracies in the correction for finite integration. As an
example this method is applied to the CBr, structure. The effect of artificial
temperature factors on accuracy is discussed by considering the method of
least squares.
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