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On a Method of ADetermining the Mechanism of an
Enzymatic Reaction the Kinetics of Which is Known

J. A CHRISTIANSEN

Institute of Physical Chemistry, University of Copenhagen, Denmark

In 1903 Henri in his thesis for the doctorate! concluded from measure-
ments on the enzymatic inversion of saccharose and some related reactions
that an enzyme may combine with the »substrate« or with the reaction pro-
ducts. The occurrence of such combinations will have a definite influence on
the kinetics of the reaction, which may therefore be used to prove their
existence.

Ten years later Michaelis and Menten published a renowned paper 2 in which
they drew attention to Henri’s work and made an extensive series of experi-
ments on the same reaction, avoiding some sources of error which had escaped
Henri’s attention. The effect is now known as the Michaelis effect, and the
constant relating to the formation of the compound between enzyme and
substrate is usually called the Michaelis constant %,,, which symbol dates from
Henri’s paper.

Although the connection with the work of Henri and Michaelis may not be
obvious, the trend of the following is to extend the interpretation of the
kinetics of enzymatic reactions on the basis given by these authors. In its
main features the method will be the same as that which has been used for
many years by many different authors, namely the method of stationarity.
It will be given in about the same form as that used in two papers in Handbuch
der Katalyse® with amendments which the application to the special case of
an enzymatic reaction has made natural.

In the following we shall treat only one enzymatic reaction, but it is hoped
that the treatment may serve as an example of the application of some very
simple principles on other reactions and thus be helpful in the elucidation of
the mechanisms of other types of enzymatic reaction.
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The reaction in question is the well known transamination reaction, e. g.

glutamic acid + pyruvic acid & keto-glutaric acid -+ alanine

which proceeds at ordinary temperature only in the presence of a certain
enzyme, transaminase. This reaction and a few analogous reactions have
recently been experimentally investigated by Sv. Darling, M.Sc., at the Bio-
chemical Institute of the University of Aarhus. The present author has taken
no part at all in the experimental investigation, but he has discussed the results
and their utilization for unveiling the reaction mechanism with Darling, who
has kindly permitted the use of some of the results of the investigation in this
paper.
The reaction is obviously of the type:

A+B & C+¢G

In the following we shall use four facts which appear from Darling’s
investigation, wiz.:

1) The equilibrium constant is (3/2)2 at all temperatures from 20°C to
about 70°C, ¢.e. AH for the reaction is zero or rather experimentally not
discernible from zero.

2) Starting with equivalent concentrations a and b of A and B, respectively,
the reaction follows approximately the unimolecular law, the constant, of
course, being proportional to the total amount of enzyme.

3) Under the same condition the reciprocal velocity constant increases
linearly with e, but is not proportional to a, <. e. a graph with I/k and a as
coordinates will be a straight line which does not pass through the origin.

4) When one experiment is started with different values of @ and b (c, =
a, cg = b), and another with exchange of the values (¢, = b, cg = a), it appears
that the course of the reaction in the two cases is the same or very nearly the
same, 7. e. we may say that the course is symmetrical in @ and b.

We now attempt to find by trial and error a mechanism which is in harmony
with the kinetics.

Beginning with the simplest possibility, we may assume that the reaction is:

E+A+B & C+G+E

where E denotes the enzyme.

From this assumption we conclude that the reaction is bimolecular with
respect to A and B, which certainly is not the case. Therefore this possibility is
ruled out.
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I II II1

Fig. 1. Geomelrical representations of the sequences pp. 495, 499, 500.

Next we assume that the reaction is:

A+X, 2 X,+C (1)
B+X, & X, +G (+ 2)

Here X, and X, are symbols for two different forms of the enzyme. If their
corresponding concentrations z, and z, are added, we get, of course, the total
enzyme concentration, which will be denoted E.

This (closed) sequence may also be represented geometrically by means of
diagram I in Fig. 1. This diagram is intended to mean that by reaction (4 1)
A disappears (from the world outside the circle), while C appears, and similarly
for reaction (4 2). A reaction in the opposite direction is symbolized by the
same diagram only with all arrows reverted.

To describe the reaction quantitatively we say that e. g. X, has a certain
probability per unit time w,* to react according to reaction (+ 1) and the
reaction probability w_, to react according to (—2) efc., the w’s being either
constants or constants multiplied by one or (rarely) two concentrations. In
our scheme @, = kja or @, = k,(a—=) if @ is the concentration of A at ¢t = 0,
and z is the amount which has reacted at time ¢.

Now it is well known to-day that with time in seconds the constants
occurring in these expressions are either very large, 7. e. about 10’3 for reac-
tions of the unimolecular type, abt. 101! for reactions of the bimolecular type
or the same large numbers multiplied by an exponential of the form e™/7,
which for reactions with measurable velocities is a very small fraction of 1,
e.g. 10711 or less.

From this it follows that if sums like w; + @_; occur in our expressions, and
we know that there is a difference in energy-level for the two systems between

* ®» should be read as the greek letter pi. The correct type, (e.g. Guggenheim and
Fowler, Statistical thermodynamics, 1939) was not available.



496 J. AL CHRISTIANSEN

which the reaction takes place, we may, with an accuracy usually greater by
far than the accuracy of our experiments, omit either one or the other member
of the sum. On the other hand, when the two systems are on the same level,
we may according to present views assume that both are large, ¢. e. that they
do not contain the exponential factor.

In the case considered here we have the extra simplification that AH of
the reaction is zero, which means that the effect of thé activation-energies
disappears in the equilibrium expression. From these considerations it follows
that we may ascribe a meaning to the orientation of the diagram. As it stands
it is intended to mean that the reaction probabilities of the »upward» reactions
(~— 1) and (- 2) are immensely small as compared to those of the ddownward»
reactions (+ 1) and (— 2). If we had placed z; and x, on the same level in the
diagram, this would mean that all four probabilities are large, but this again
would mean that the reaction would be immeasurably fast unless the enzyme
concentration is practically nil. In the following we shall not consider this case.

We shall now proceed to discuss the partition of the enzyme on the two
states: X, and X,. This partition will, of course, depend on the momentary
values of the concentrations of A, B, C, and G, but besides this it may depend
explicitly on time. To find this dependence on time of z; and z,, we treat the
problem tentatively as if the reaction-probabilities were constant in time.
Of course, this assumption is not strictly true, but they may vary so slowly
with time that their dependence on time is of no consequence.

The mathematical treatment of a problem of this type is well known 4,

Denoting differentiation with respect to time with a dot, we obviously get:

2y =, (@ + Gg) — %, (@3 + B_y)

—2y = —, (0 + w_y) + %y (0 + 0)
Putting —x, = A x,, —%, = A «,, we get the characteristic equation.

Wy + o, — A — (@ + ®y) |
— (@, + _9) Wy + @y — A |

|
!

=0

the roots of which are 4, =0, 3, = w, + w_3 + @y + w_;.
The general solution becomes:

2, =FE (0, + o_y)/A + 4 exp (— 4)
2y =E (@, + w_p)/A — A4 exp (— A)
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where A is a constant which can be determined when, and only when we
know the partition of the enzyme on the two states at time zero. In most
cages this knowledge is difficult or impossible to obtain, but fortunately it is
unnecessary, for when we remember the orientation of the diagram, 4, can to
all intents and purposes be put equal to w; + @ _, which are both very large.
If for instance the concentrations applied in the experiment are of the order of
magnitude 1073 molar, w; + w_, will be something like 108 reciprocal seconds,
which means that the exponentials above have practically disappeared at the
same moment the reaction is started, ¢. e. the partition on the two forms is
stationary practically from the start.
This being so, we may safely apply the method of stationarity to calculate

the reaction velocity s:

8§ = T,y — Ty0_y

8§ = Tywy — Ty0_y

the solution of which may be written:

Lafs = wy 4+ w4 [

Lay/s = wy + w_y L= oyop—0a0,
or,as v, + ., = E

LE[s=M

M=&)—2+5—1+61+6-2

If we express the concentration at time ¢ of A by a—=, where a is the value at
t = 0, and similarly for the other participants then obviously s = dx/d¢t, and
the equation is a differential equation for the determination of z as a function
of ¢, or what is more convenient for the determination of ¢ as a function of z.

The integration is fairly easy, but unnecessary as we see at a glance that the
expression is hopelessly unsymmetrical in @ and b. For if the orientation of the
diagram is as given, w, and w_; disappear from M so that M =k, (a—=z) +
ky (g9 + x), whereas if it is turned upside down w, and w_, disappear with a
similar consequence. As L is always symmetrical in ¢ and b, this proves our
case.

The next step is to assume a sequence containing three partial reactions as
represented by diagram IT or by the sequence:

A+X, 2 X, (£ 1)
B+X, & X;+C (+ 2)
X, @ X,+G (+ 3)
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As in the former case we start with an investigation of the dependence on

time of the partition of the enzyme on the three states. The characteristic

equation becomes of the third degree and has the roots 1y, = 0, 4, and 4,

2, and A, may contain an imaginary part, but it can easily be seen that their

real part must be positive and large so that again the members containing the

exponentials exp (— 4,t) and exp (— 4,¢) disappear in practically no time.
The conditions of stationarity become:

§ = X0, — Tow_,
8§ = xza)_a -_— 14'3(7)_2
8 = Zywy — T,0_3
The solution is:
La[s = wyw3 + w_j03 + @_j0_,
La,/s = wgw; + &g + w_sw_g L = 0,w03 - — 0_j0_sw_g

an/s = 6162 + 6_362 + 6_36_1

and consequently:
LEfs=M

where M is the sum of the members in the 9-membered »partition matrix»:

X, Wetlg W_j3 W_;0W0_o
Zy W3, } W_ot; W03 i,
2, W1y O _gWy | W_3W_y

the form of which is easy to remember (start with @,). It is called the partition
matrix because the sum of the members in each line is proportional to the
quantity of the form of the enzyme which is indicated in the three-membered
matrix to the left of M.

As the total amount of enzyme is known (in principle) and constant in
time in each experiment, the amounts of the three forms at any time can be
easily calculated by means of this matrix when the different constants have
been determined.

For the following it will be convenient to write down a matrix of the same
form (9 members) containing only the simultaneous concentrations of the four
substances A, B, C, and G appearing as factors in the expressions with omis-
sion of the constants, the respective concentrations being named «, b, ¢, and g.
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In the case considered this matrix (the c-matrix) becomes:

b 1 ¢
a [ea o]
[ab gblg

When the diagram is orientated as shown in II, the Iilembers outside the
frames disappear as compared to those inside.

It appears on consideration of the c-matrix that in this case M may be
symmetrical in @ and b, namely if ¢ = ¢, and k b = k 4k,

Further inspection of the six different possibilities of orientation:

£
Ty ¥

T, Ty
45

Ty
T, I3

T3 I,
Ty

T3
Ty ¥

x, T,
T3

will show that this is also the only orientation of the diagram which can lead
to the desired symmetry in e and b.

For comparison with the experiments we shall introduce the w-values
which follow from the sequence assumed:

o=k (a—=); o,==Fky; wy=1Fk b—2) w,=k,; (c+ )
w3 = ky; w_s = kg (g + x); and furthermore: 1fs = d¢/dx

Now most of Darling’s experiments were made with ¢ =b; ¢ = ¢ = 0.
On these assumptions integration of the differertial equation leads to the
expression:

2 —_ 2
2qk3Et=—-a(Tl)iqq) In (l—-a(l—f—q))-i—a(fl)__qq) In (1—a (1—q)) +
l 2
2aaq—(l—::—§lz—

where:
P = kolks = k_g/ky, q 2 = k 1k ok s/k1koky and o« = z/a.

On comparison of this formula with the actual experiments, it appears that
- the first member in the sum on the right hand side is the leading one, i. e. the
" reaction follows with good approximation the unimolecular law (for a revers-
ible reaction). Further it appears from the formula that the reciprocal constant
5
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of the reaction increases with a, which is qualitatively in agreement with the
experiments. The formula, however, disagrees with the experiments as it
shows that the reciprocal constant should be proportional to @, while as a
matter of fact the experiments show that it increases linearly with a, the
straight line connecting the empirical points in the (a, 1/k)-plot not passing
through the origin.

We must, therefore, also discard this mechanism and proceed to investigate
the consequences of the sequence:

A+X, & X, (1)
X, & X;+¢C (4 2)
B+X, & X, (£ 3)
X, & X +6 (4

which is represented by diagram III.

The investigation follows the same lines as in the former cases, that is
we start with the investigation of the dependence on time of the partition of
the enzyme on the different states, and having proved that the partition must
become stationary in a time which is negligible compared to the time in which
the over-all reaction has proceeded perceptibly, we write down the expres-

sion:

LEjs=M

wkich is a differential equation connecting the degree of reaction x with time.

In this case it is a little complicated to estimate the values of the roots in
the characteristic equation which determine the time for attainment of sta-
tionary conditions, simply because the equation is of the third (fourth) degree.
If the equation is written:

@At — A3 4 @A —agd 4 a, = 0

it is at once seen that ¢y = 1 and a, = 0, so that 4, = 0 is as always one of
the roots.

The other constants are positive. We find ay = M, 1. e. a; equals the sum
M of the 16 members in the below partition matrix (p. 503).

Furthermore a, equals the sum of the eight reaction probabilities. a, is a
sum of 20 products of the form ww; (i # < j):

I
|
|
|
!

wzﬂ) 3 (U_l W3 _16_2
ay = T ) Wiy Wy 2~2§—3 + Z (E’l + §—4) (2_3 + _fT_Lz)
< Wy W_30; W 30_4 (wy + 04) (w4 + @_3)

B
i3
g
iy
&
8|
L
g
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Now if the diagram is as indicated, ¢. e. if we assume that w_, and w,, and.
only they contain the exponential factor, we get for a; a sum of 6 quantities:
o, for a, a sum of 11 products w®, and for a; a sum of 6 products ww w, none of
which contains the exponential factor exp (—A4/T).

This shows that the three roots are all large, so that the exponentials
exp (—Af) will disappear practically instantaneously.

If, however, the diagram is assumed to be IV in Fig. 2.

Iv

Fig. 2. Geometrical representation of the sequence p. 500, second form.

z, and x, are obviously confined to two »valleys» between two »hills», and it
must be expected that the transition from z, to z, and vice versa is »slow».
This appears, too, when we try to solve the characteristic equation. In this
case w_;, Wy, W_g, and , all contain the exponential term exp (— A4/7). This
has the following consequences:

Of a, a sum of 4 @’s remains: w; + w_4, + w3 + w_,,
and of a, only the product: (w; + w_,) (ws + w_,) remains. None of
these members contains the exponential term. In a; however, the,
exponential term is retained, as in the lines corresponding to x, and z; in
the partition matrix it appears in the second power, while in the z, and
x, lines it appears in the first power. This corresponds to the fact that we have
assumed z, and z, to be situated in »valleys», while z; and z3 have been placed
on the top of the »hillsy.

What is left of a; is a sum of eight members all containing one exponential
term, four in the z,-line and four in the z,-line of (M). It is, therefore, obvious
that in this case two roots are large, and one is small. As the equation becomes:

B—(w; + w_y + 03 + 0 )4 + (0 + ©04) (03 + W )A—M =0
the two large roots must be very nearly:

h=wF+w, ; A= w3+ 0w,
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while the third is determined (approximately) by neglecting the first two
members of the equation and solving for A.

What we now need is only an estimate of the small root 2y. For this pur-
pose we consider the situation at the start of an experiment, where the con-
centrations ¢ and g are zero. Under these conditions the @’s of the »negatives
reactions (—2) and (—4) disappear, and we get (compare the expression for
M p. 503):

01034 — 0,03 (g + @w,) = 0

M= wy+ w,=ky + k,
Under the same conditions we get for s from LE/s = M:
Eo,0ws0, = som3(w, + o,)
W, kyk,

: w; + Wy ky + &,

an expression for the velocity of the over-all reaction. From this we get the
decay-constant, which is to be compared with 4, by dividing by a, the initial
concentration of A4:

s E Lk,

If ky = ky = k, we find 4; = 2k; s/a = Yk E/a. As E/a is in most experi-
ments a very small fraction of 1, it appears that even if the absolute value of 4,
is small, it will be large as compared to the »decay-constant» of the over-all
reaction, and this knowledge is sufficient for our purpose. In the case that
k, and k, are different, for instance k, > k,, the ratio between 4, and s/a
becomes still larger, as in that case 4, = k, and sja = k; E/a. Thus we have
proved that even in this rather disadvantageous case it must be assumed that
the partition of the enzyme on the four different states becomes stationary a
relatively very short time after the start of the experiment.

The rest is easy. We shall use the equation:

ELjs =M
where

L = 0,0,030,—0_j0_s0_sw_,
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and M is the sum of the 16 members in the partition matrix:

xl 626364 w_1w3w4 6_16_264 w_lw_zw_a
Zg W34 W_s0400 l W_gC0_300¢ W_oW. 3W_y
Zg [T ' W_3001(Wg W_g_40Wq W_g_400_3
x4 t W13 W_4 W03 ‘ W_4_1003 W_gW0_100_o
The corresponding c-matrix is:

z b b ¢ ¢

z, ba ca | ca cg

Z, a | a g | g

z, | ab gb | gb ge

The members which according to diagram IIT do not contain exponentials
are inside the frames. It is seen that the expression for ¢ cannot be made
exactly symmetrical in @ and b, but the constants may have such values that
the dissymmetry is small. As a matter of fact Mr. Darling has found by his
experiments that under certain starting conditions a dissymmetry exists.

To use the expression it is integrated as before, but as the aim of this paper
is only to discuss the method, and as the author has no part in the experi-
ments, we shall not enlarge on details.

It must, however, be added that by repetition of the three first lines in the
partitionmatrix below the matrix, and displacement of the frame by two
lines downward, it can be seen that another possibility exists for getting an
expression of a similar form. Inspection of the diagram and the corresponding
sequence shows, however, that there is no real difference between these two
possibilities, as the latter can be arrived at from the former simply by changing
the meaning of the symbols.

A more essential addition is that diagram IV discussed above might also
lead to kinetics which harmonize with the experimental facts. As mentioned
above all the members in the z; and z, lines are in this case to be omitted from
the partition matrix (for the application in the expression for s). Comparison
with the c-matrix shows that by an appropriate choice of the constants the
expression can be made symmetrical in ¢ and b (when ¢ = g). It is for the
experiments to show whether one or the other mechanism is the right one,
the essential thing being that the consequences are sufficiently different to
make a decision possible.
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So far we have only discussed the analysis of the kinetic results and have
completely disregarded the information which may be gained by chemical
considerations. The reason for this is that the results become more conclusive
when arrived at independently in different ways.

Not to forget completely that we are dealing with a chemical reaction, we
may, however, add that from a chemical point of view the mechanism expres-
sed in diagram IV might seem to be more probable than that in diagram III,
as (1) and (3) are associations, while (2) and (4) are dissociations.

SUMMARY

The kinetics of an enzymatic reaction:
A+B & C+G

are discussed by means of the so-called partition-matrix, a matrix from which
the stationary partition of the enzyme on its different possible forms and the
stationary reaction velocity can be derived.
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