Monosubstitution Derivatives of Cadalene. II *

JARL GRIPENBERG and RALF G. LINDAHL

Chemical Laboratory, Finland Institute of Technology, Helsinki, Finland

In a previous paper¹, one of us has shown that the nitration, Friedel-Crafts-acetylation, and bromination of cadalene lead to products with the substituent in the same position. By degradation reactions it was also shown that the entering substituent most probably occupies the 2-position (I; R = NO₂, CH₃CO, Br resp.), although the 3-position could not be definitely excluded.

After that work had been published, a paper by Campbell and Soffer ² came to our knowledge, where the synthesis of 2-methylcadalene (I; R = CH₃) is described. By converting one of the substituting groups NO₂, CH₃CO or Br into CH₃ it would be possible to procure unequivocal evidence of the 2-position for these substituents.

This has now been done by treating the Grignard-reagent from bromocadalene with ethyl orthoformate and hydrolysing the acetal $(I; R = CH(OC_2H_5)_2)$, which was not isolated, to the aldehyde 3 (I; R = CHO). This was reduced by Clemmensen-reduction to methylcadalene $(I; R = CH_3)$. This compound was an oil, but was characterised as the picrate, the trinitrobenzolate, and the styphnate. These had m. p:s in good agreement with the values given by Campbell and Soffer 2 for the corresponding derivatives of

^{*} Part I, Gripenberg, J. Ann. Acad. Sci. Fennicae Ser. A. 59 (1943) no. 14.

their 2-methylcadalene. Professor M. D. Soffer was kind enough to carry out mixed melting point determinations on these derivatives, for which we are grateful. He reported the following m. p:s.

	Present authors	Campbell and Soffer	Mixed melting point
Picrate	140-140.5°	138.5139°	$139.5 - 140.5^{\circ}$
Styphnate	170°	170°	170°,
Trinitrobenzolate	167—168°	$169-169.5^{\circ}$	167—169.5°

(The m. p:s of the picrate and the trinitrobenzolate are somewhat lower than the m. p:s reported in the experimental part. This is probably due to partial decomposition of the products on standing.)

As no depression of the m. p:s was observed, it seems safe to assume that the parent hydrocarbons were identical.

Briggs, Gill, Lions and Taylor ⁴ have, in a somewhat different way, also been able to connect the derivatives obtained by direct substitution of cadalene with the synthetic 2-methylcadalene.

The constitution originally assigned to nitro-, acetyl- and bromocadalene and the products obtained from them 1 can hence be regarded as correct.

EXPERIMENTAL

2-Cadalenealdehyde. The Grignard-reagent was prepared with 1.1 g Mg from bromocadalene (13 g) and then ethyl orthoformate (6 g) was added. The ether was distilled off, and the mixture was heated for half an hour on a water-bath. The thick oil obtained was poured into water, a small amount of acetic acid was added, and the acetal extracted with ether. The ether solution was warmed with 2 N hydrochloric acid on a water-bath. The ether was then evaporated and the remaining oil fractionated in a vacuum. The following fractions were obtained:

I	$170^{\circ}/8 \text{ mm}$	1.1 g
П	$170-180^{\circ}/8 \text{ mm}$	1.4 g
111	$190-200^{\circ}/8 \text{ mm}$	3.5 g
Residue		3.0 g

Fraction III solidified and was recrystallised from light petroleum, m. p. 85.5-86.5°.

C ₁₆ H ₁₈ O	(226.2)	Calc.	\mathbf{C}	84.88	\mathbf{H}	8.04
-		Found	*	85.00	»	7.55

The semicarbazone was prepared in the usual way and had after recrystallisation from alcohol m. p. 222—223°.

$C_{17}H_{21}ON_3$	(283.2)	Calc.	\mathbf{C}	72.06	H	7.47
		Found	*	71.87	*	7.31

2-Methylcadalene. 2-Cadalenealdehyde (3 g) was reduced with amalgamated zinc (10 g) and hydrochloric acid (100 ml; 1:1) in the usual way. The reduction product was extracted with ether and steam distilled. 1 g of a colourless oil was obtained. This was without further purification converted into the picrate, styphnate and trinitrobenzolate.

The picrate, red needles from alcohol, had m. p. 143-144°.

The styphnate, orange red needles from alcohol, had m. p. 169-170°.

The trinitrobenzolate, yellow needles from alcohol, had m. p. 170-170.5°.

SUMMARY

The conversion of bromocadalene into 2-methylcadalene is described. The previously proposed structure for bromocadalene, and other derivatives of cadalene is thereby verified.

The analyses were carried out by Mr. K. Salo, University of Helsinki.

REFERENCES

- 1. Gripenberg, J. Ann. Acad. Sci. Fennicae Ser. A. 59 (1943) no. 14.
- 2. Campbell, W. P., and Soffer, M. D. J. Am. Chem. Soc. 64 (1942) 417.
- 3. Cf. Tschitschibabin, A. E. Ber. 44 (1911) 447.
- 4. Briggs, L. H., Gill, N. S., Lions, F., and Taylor, W. I. J. Chem. Soc. In press.

Received February 16, 1949.