Monosubstitution Derivatives of Cadalene. II *

JARL GRIPENBERG and RALF G. LINDAHL

Chemical Laboratory, Finland Institute of Technology, Helsinki, Finland

In a previous paper\(^1\), one of us has shown that the nitration, Friedel-Crafts-acetylation, and bromination of cadalene lead to products with the substituent in the same position. By degradation reactions it was also shown that the entering substituent most probably occupies the 2-position (I; R = NO\(_2\), CH\(_3\)CO, Br resp.), although the 3-position could not be definitely excluded.

![Chemical structure](image)

After that work had been published, a paper by Campbell and Soffer\(^2\) came to our knowledge, where the synthesis of 2-methylcadalene (I; R = CH\(_3\)) is described. By converting one of the substituting groups NO\(_2\), CH\(_3\)CO or Br into CH\(_3\) it would be possible to procure unequivocal evidence of the 2-position for these substituents.

This has now been done by treating the Grignard-reagent from bromocadalene with ethyl orthoformate and hydrolysing the acetal (I; R = CH(OC\(_2\)H\(_5\))\(_2\)), which was not isolated, to the aldehyde\(^3\) (I; R = CHO). This was reduced by Clemmensen-reduction to methylcadalene (I; R = CH\(_3\)). This compound was an oil, but was characterised as the picrate, the trinitrobenzolate, and the styphnate. These had m. p:s in good agreement with the values given by Campbell and Soffer\(^2\) for the corresponding derivatives of

their 2-methylcadalene. Professor M. D. Soffer was kind enough to carry out mixed melting point determinations on these derivatives, for which we are grateful. He reported the following m. p:s.

<table>
<thead>
<tr>
<th>Derivative</th>
<th>Present authors</th>
<th>Campbell and Soffer</th>
<th>Mixed melting point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picrotate</td>
<td>140—140.5°</td>
<td>138.5—139°</td>
<td>139.5—140.5°</td>
</tr>
<tr>
<td>Styphnate</td>
<td>170°</td>
<td>170°</td>
<td>170°</td>
</tr>
<tr>
<td>Trinitrobenzolate</td>
<td>167—168°</td>
<td>169—169.5°</td>
<td>167—169.5°</td>
</tr>
</tbody>
</table>

(The m. p:s of the picrate and the trinitrobenzolate are somewhat lower than the m. p:s reported in the experimental part. This is probably due to partial decomposition of the products on standing.)

As no depression of the m. p:s was observed, it seems safe to assume that the parent hydrocarbons were identical.

Briggs, Gill, Lions and Taylor 4 have, in a somewhat different way, also been able to connect the derivatives obtained by direct substitution of cadalene with the synthetic 2-methylcadalene.

The constitution originally assigned to nitro-, acetyl- and bromocadalene and the products obtained from them1 can hence be regarded as correct.

EXPERIMENTAL

2-Cadalenealdehyde. The Grignard reagent was prepared with 1.1 g Mg from bromocadalene (13 g) and then ethyl orthoformate (6 g) was added. The ether was distilled off, and the mixture was heated for half an hour on a water-bath. The thick oil obtained was poured into water, a small amount of acetic acid was added, and the acetal extracted with ether. The ether solution was warmed with 2 N hydrochloric acid on a water-bath. The ether was then evaporated and the remaining oil fractionated in a vacuum. The following fractions were obtained:

<table>
<thead>
<tr>
<th>Fraction</th>
<th>boiling point</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>170°/8 mm</td>
<td>1.1 g</td>
</tr>
<tr>
<td>II</td>
<td>170—180°/8 mm</td>
<td>1.4 g</td>
</tr>
<tr>
<td>III</td>
<td>190—200°/8 mm</td>
<td>3.5 g</td>
</tr>
<tr>
<td>Residue</td>
<td></td>
<td>3.0 g</td>
</tr>
</tbody>
</table>

Fraction III solidified and was recrystallised from light petroleum, m. p. 85.5—86.5°.

C₁₆H₁₈O (226.2)
Calc. C 84.88
Found 85.00

H 8.04
Found 7.55

The semicarbazone was prepared in the usual way and had after recrystallisation from alcohol m. p. 222—223°.

C₁₇H₂₁ON₃ (283.2)
Calc. C 72.06
Found 71.87

H 7.47
Found 7.31
2-Methylcadalene. 2-Cadalenealdehyde (3 g) was reduced with amalgamated zinc (10 g) and hydrochloric acid (100 ml; 1 : 1) in the usual way. The reduction product was extracted with ether and steam distilled. 1 g of a colourless oil was obtained. This was without further purification converted into the picrate, stypnate and trinitrobenzolate.

The picrate, red needles from alcohol, had m. p. 143—144°.
The stypnate, orange red needles from alcohol, had m. p. 169—170°.
The trinitrobenzolate, yellow needles from alcohol, had m. p. 170—170.5°.

SUMMARY

The conversion of bromocadalene into 2-methylcadalene is described. The previously proposed structure for bromocadalene, and other derivatives of cadalene is thereby verified.

The analyses were carried out by Mr. K. Salo, University of Helsinki.

REFERENCES

Received February 16, 1949.