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In the physico-chemical characterization of polydisperse, high molecular com-
pounds it is very important to get information about the degree of hetero-
geneity. If an ultracentrifugal sedimentation * of a polydisperse substance
is performed, a separation of the components always occurs because mole-
cules of different sizes have different sedimentation velocities. Sedimentation
in the ultracentrifuge therefore is a very convenient way to get the required
information. Gralén! using this method as a measure of the polydispersity,
determined the width (B) of the sedimentation curve (obtained by means
of the scale method according to Lamm 2) as the quotient between the area
(4) and the maximum height (H), <. e.

A
B=% (1)

If the molecular weight of the particles is not too small, the diffusion in case
of substances with threadlike molecules can be neglected. Hence it can be
assumed, that the variation in width of the curve is due only to the polymole-
cularity of the substance. As the large molecules always sediment more ra-
pidly than the small ones, the width B will increase with time and have diffe-
rent values at different distances () from the centre of rotation. In this way
Gralén has studied the derivative dB/dz and as the final measure of the poly-
dispersity introduced dB/dx extrapolated to zero concentration.

Gralén assumes that B varies linearly with z, and points out that this is
evident from the experiments. The purpose of this study is to discuss this

* For details about the sedimentation cf. T. Svedberg and K. Pedersen, The Ultracentrifuge
Oxford (1940); subsequently referred to as UC.
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relationship more thoroughly, and to show a way in which dB/dx can be cal-
culated in order to get a close relationship between the value, B, and quantities
which characterize the frequency-distribution function of the substance.
The discussions have hitherto been limited to the case where the sedimentation
is not dependent upon the concentration of the solution.

There are mainly three factors which may have an influence on the calcu-
lation of dB/dx and for which corrections have to be introduced. These factors
arise from the changes occuring in the curve during the course of the sedi-
mentation. Firstly, the width of the sedimentation curve is not only deter-
mined from the different sizes of the molecules but also from the increase
in the centrifugal field with the distance from the centre of rotation. The
width of the curve is larger then what would be expected from the polydis-
persity. Secondly, the value of dB/dx may change, depending upon whether
the calculation is carried out in the originally plotted sedimentation diagram
or whether it is made in a diagram where a correction has been made for the
dilution due to the sector shape of the centrifuge cell. Thirdly, dB/dx may
be affected by the characteristic displacement of the maximum point of the
gedimentation curve of polydisperse substances (Kinell 3).

’ In order to study the relation between B and the distance x, we assume
" that the substance is characterized by the following frequency-distribution
" function for the sedimentation constants (s)

dey {f(s) for ;<8< g @)
ds |0 for ¢ <s; and s> s

where ¢, is the analytical concentration. Further we assume that this function
has a single maximum for s =s. We get the following sedimentation curve:

& [pla)  for y<a<uz ®
de |0 for 2, <z <z, and > 7,

or correcting for the sector shape of the cell:
dey  [y(x) for xISxsz )
dx |0 for z, <z <<z, and x> 2,

. These curves too have only one maximum, for z, and «/,, respectively. Be-
_tween dc/dx and dc,/dx the following relation is valid (c¢f. Rinde 4):

deo dcyx\2 -
2;=@(x7,) ®)
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For the transformation of the dcy/ds-curve to the dc/dx- and dey/dz-curves
respectively, the following equations have to be used:

z = %ewzst (6)

d_c d__ﬁ e—3w28t
de ds zyol

(7a)

2
dey dey €@ st

de ~ ds z0%%

(7b)

where xz, is the position of the meniscus in the cell and w is the angular velo-
city of the rotor. '

From equ. (7) it is easy to obtain the following equations, which determine
the s-values corresponding to the maximum points of the dc/dx- and dcy/dz-
curves (cf. Kinell L. c.)

d’;(j ) _ 3w2f(s) = 0 (8a)
d—igl — w¥f(s) =0 (8b)

The solution of these equations gives s,(¢) and s, = s,(f). It is easily seen,
that these functions satisfy the relation

su(t) <8, () <5 9

where the equality sign has to be used for ¢ == 0. The displacement of the
maximum point is therefore largest for the original sedimentation curve.

The calculation of dB/dx from the original and corrected sedimentation
curves is now possible by means of equ.s (1), (6) and (7). We get the following
- expressions for B and B, as functions of the time:

= @,(t) zy0¥ (iOa)
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By=2__ =) mek (10b)

where

S =" Botet (11a)

Dy(t) =2 et (11b)

By differentiating with respect to z, and z. and observing that s, and
s, are functions of the time, we get

dB 1+ : ]nd(fl (t)] o out
d_x,,, S (pl (t) T ds, (12a)
w1+ &
d In (Dg (t) _w3't
dB, [1 g ] e
Tt = Bl = (12b)
s, [1 + '-9,_:. ?dt—]

These expressions are evidently dependent on the time ¢ and hence dB/dx gene-
rally cannot be a linear function of z. It also follows, that dB/dx does not
give any simple characterization of the frequency-distribution curve. However,
if we regard the case ¢t = 0, we have
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(@) =2 as)
(@), = as

Now according to equ.s (11) and (9)

&, (0) = @, (0) =“’1_c___

dcy
d8 )8 23
and hence

dz,, T\dz, ), 0 deg
S(Ei;o)s=5

dB dB (14)
&)~ (a), ., =2

If an extrapolation is made to the moment when the sedimentation starts,
we obviously get a quantity, which in a very simple manner is related to the
frequency-distribution function. This expression is already given by Gralén,
but from the treatment here, it is evident that it is valid only at the time ¢ = 0,
and further, that the same expression is obtained independently, whether or
not the correction for the dilution with the sector shape of the cell has been
made.

In order to understand thoroughly the deviations from the linear relation-
ship between B and z, it would be necessary to give an involved discussion of
equ. (10). This is however rather laborious and not necessary for the practical
calculations as will be shown later. It is only of interest to point out that
the following: expression is obtained by expansion of equ. (12a) in a power
serie of the time #:

YD), =1 +(5 =t~ )oret ...

where 3, is the weight average value of s corresponding to the original fre-
quency-distribution function. It is evident that for small values of w?, the
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curve B(z) can be situated either below or above its tangent at the origin
depending upon the sign of the expression within the brackets in the right
member. This sign depends upon the nature of the frequency-distribution
function. For a high polydispersity s, may "have such a large value that
dB/dx, < (dB/dx,) ,_, and for low polydispersity the difference between &
and 3, may be so small that dB/dx,, > (dB/dz,),_, For equ. (12b) it is pos-
gible to show that dB,/dx, > (dB,/dz,),_, for all values of ¢ and for every
frequency-distribution funection. The reason for the difference between the
two cases is the dilution with the sector shape of the cell. This brief discus-
sion elucidates the necessity of having complete information about all the
phenomena occurring during the sedimentation before judging the results
obtained by calculating dB/dz.

The relation between B and z for a special frequency-distribution function
is shown below.

Let us assume, that the substance is characterized by the logaritmic fre-
quency-distribution function given by Gralén (I. c.):

1

— In2?
dﬁ’ . Vs®
ds = €

%l | e

(15)

where K, is the maximum height and y, is a distribution coefficient. The
range for the s-values is 0 <s<oo. If we apply equ.s (8), (10) and (11)
we geb

'3 9

z\3 + oy - m2 "
_ m 27s Lo 4 z
B= x"(xo) lnxo o - Il (16a)
where
s 28/, 8 z,
" Ys "
R e O
N e SR
S
and
1 + , w,’n T 1 2
x S 1 $
B, = %, 7, Vyz( ) 2 7 In xo 4V 2 T 47 (16b)

For comparison we have the following expressions, if the displacement of the
maximum point is neglected:

z,\3 =,
B=x0(x—0) In— . I (17a)

Lo
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where
o 1 8 28 =z,
TRERETTEhG
Iﬂ:/e P Od(:)
P §
and 1 .
. ’ ’ _,},2 :
— (% x :
4 s
B, =z (_"') il
0 0 Vs V” %, 111% e (17b)

The numerical calculations have been made for 5.0 < 2 < 6.0 cm and for
ps = 0.1, 0.5 and 1.0 and the results are given in figs. 1 and 2.

Firstly it is seen that the effect of the displacement of the maximum point
cannot be neglected when the polydispersity is high. It is also evident thét
for high values of y, we get curves which deviate rather much from the
straight lines corresponding to the tangents of the curves at the origin. An
exception is the curve for y; = 1 in fig. 1. Theoretically, at low values of
w?, the change of the slope shall occur for a ys-value determined from the
equation 2
5—4e%T2% 3.2

Solving this we get y, = 0.919. Secondly we see that the curvature of the
curves is rather low, and it is easy to make serious mistakes about the nature
of the curves. When for instance the points 4, B, C and D (fig. 2) were ex-
perimental points, it is consistent with a rather high degree of accuracy to
assume that they represent a linear relationship between B and ». Taking
the slope of such a line we will get too high values of dB/dz.

In order to avoid all the difficulties associated with the dB/dx-calculation
according to equ. (10), we have to change the method essentially with respect
to the displacement of the maximum point. The first quantity we need is
an area A. For this we choose the area of the corrected sedimentation curve.
But since the correction means that this area will be equal to the analytical
concentration at every time, it is not necessary to make this correction. We
have only to use the analytical concentration (c,). As Gralén points.out, it
is obviously correct to assume a constant concentration throughout the ex-
periment. At least this must be the case for a pure substance in a good sol-
vent. If there is any doubt about this, the corrected curve can be traced by
means of equ. (5)*. The areas are measured and compared with the analytical

* It is to be noted, that the use of equation c¢/c, = (z /x )? gives a wrong result, because
this equation is valid only for a monodisperse substance with & sedimentation, which is not
concentration dependent. Using this equation we get
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concentration. The proper height H to be used must be a quantity correspond-
ing to the maximum height of the frequency-distribution curve. Firstly, it
is advantageous from an experimental point of view to take this height from
the original sedimentation diagram and secondly, it is necessary to take the
height corresponding to a point & determined from

z =72,e w33 L. (18)

z, z,
de, Loy ? de
Ade=f —de — (z“‘) . — dz
dz (] dz
zy L5

and if we express this in the frequency-distribution function:

— 2w*(8 —5,,)t

3
dcl)
Ae=f 231 e ds
ds
4

thus Ac is not equal to zero but dependent upon the polydispersity and the position in the cell.
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The value s can be found if we plott the s-values obtained at different times
¢t in the ordinary way against ¢ and then extrapolate to ¢ = 0. Then z can be
calculated from equ. (18) for different times, and the heights corresponding
to these points can be measured in the sedimentation diagram. Thus we get

for H: B
= (;)2(@) (dco) g w'st
T \gy \dz'x =% " \ds/ s =%zl

and thus for the width B:

Co &
C@.o: @,

If we further apply equ. (18), we get as the final expression:

(19)

(20)
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%da
ds
_ ¢ 8 _
B=— : == 2 1)

@ mzmn (&)ens

and taking the derivative with respect to x:

Sy
dc,
ds
dB 8
e .U 29
% () (22)
S\ds/s=73

This expression is independent of z, and is in a very simple way related to quan-
tities characterizing the frequency-distribution function. If the displacement
of the maximum point can be neglected, this method of calculation mainly
corresponds to Gralén’s, except that the height is corrected by multiplying
with the factor In z/x,.

One of the main problems in most of the calculations based on the sedi-
mentation diagrams is to obtain good base lines. The peak in the diagram is
often rather good but the horizontal parts of the curve, from which the base
line have to be drawn, are in many cases irregular and hence the drawing of
this line may be a little arbitrary. Gralén has tried to avoid this difficulty
by drawing a base line and adjust its position in such a way that the area of
the curve corresponds to the analytical concentration. Of course even this
involves some arbitrariness, because the lowest part of the curve has to be
constructed as extensions of the original curve. Furthermore, the shape of
the curve is not in agreement with that one which would be obtained if the
correction were made according to equ. (5). This may have some influence
on the height of the curve. The method suggested here does not involve any
arbitrariness, but does depend upon the ability to draw a good base line.

It is difficult to say anything about the application of equ. (21) for a sub-
stance with concentration dependent sedimentation. The formulas for the
correction of the dilution due to the sector shape of the cell etec. involve in
this case functions which characterize the concentration dependence. For
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concentration dependences, not greatly pronounced, however, equ. (21) may
be expected to give useful results.*

In order to show the application of the new method, a calculation of dB/dx
has been carried out on a fraction of commercial polymeric methyl methacry-
late. The fractionation was made in the ordinary way by precipitation with
cyclohexane from a benzene solution. One of the middle fractions was run
in the ultracentrifuge in an acetone solution. The sedimentation was studied
by means of the scale method of Lamm (I.c.); the following concentrations were
used: 0.396, 0.298, 0.198, 0.104 and 0.047 g/100 ml. Lower concentrations
could not be used, because they did not give any observable peak.

According to Svedberg® the sedimentation constant at the temperature
T and the distance x from the centre of rotation (cf. also Kinell, . c.**) g(x)
is given by the expression:

M[1—V;or(2)]
o (@) = fr (®)

(23)

where M is the molecular weight, V. the partial specific volume of the solute,
or(z) the density of the solvent, and fr(x) the molar frictional coefficient
of the solute at the distance = from the centre of rotation. The dependence
on z for these last two quantities has been introduced, because they are de-
pendent on the hydrostatic pressure in the cell. We write fi(z) =
nr(x) « F (M, V, h), where zp(x) is the viscosity of the solvent and F
a funetion which is determined by the size, shape, and solvation of the mole- -
cule. In a first approximation, we can assume this function to be independent
of small changes in temperature and pressure. We now reduce s;(z) to a
standard condition 7' = 20° C and the pressure 1 atm, then we get (cf. UC
p. 35 and Mosimann and Signer ¢) the following expression:

720 (®) [1 — Vror (%)] - 7720 (%g) [ — Vaoozo (#)]
N1 (@) [1— Vaoozo (%)] - 790 (%) [1 — V20020 (%0)]

87{(%) = 83,2

* Gralén's treatment of the sedimentation curves before the dB/dz-calculation makes it
probable that his calculations theoretically should correspond to a case between our cases re-
presentad by equ.s (10a) and (10b). A linear relationship is not then excluded with regard to
the discussions on p. 340. Furthermore the concentration dependence may have an influence
upon the deviations from the linear relationship but a final decision cannot be made before the
mathematical calculations for the concentration dependent case have been carried out.

** The dependence of & on the changes of concentration in the cell has been disregarded in
the following treatment. '
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S$1,20

T4+ e@)]

(24)

The correction for the temperature is made under the assumption that the
pressure is constant. In the equation above 1 4§ (T') may be regarded as
independent of the time and the distance . This is true only as an approxi-
mation, but if the centrifuge run has been carried out carefully the variations
in the temperature are rather small and serious disturbances can occur only
at very low concentrations (cf. Jullander 7 p. 54). The function 1 4 ¢ (x)
is at low speeds of rotation a linear function of x and can be written in the
form 1 4 R(x — =,)/x,. According to Svedberg (I. c.) we have

1 dz

(%) = o ar (25)

and hence we get from equ. (24)

R dx 2d
145 e—m)] = 5w (26)

Integrating this and assuming that w is independent of time we get

z R 81,200%
(1—R) 1n;;+;‘)-(x—xo)=Tq_—6(—T“)‘ (27)

Here we can develop R In z/x, in a power serie of Ax/x,, Where Az =z —
z,. In our case, where R has a rather low value, it is sufficient to have only

two terms and then we get

148 @[5 +3 (5] = st (28)

This formula is valid with an accuracy of a few tenth of a percent. If we plott
the left member of this equation against w?, we obtain straight lines if s is
not affected by the decrease of concentration with the sector shape of the cell
and by the polydispersity.

For the substance investigated here, the speed of the rotor was 30000
r. p. m., the correction for the changes in temperature was less than 2 %,
and the correction for the pressure increased to about 5 9, for a sedimented
distance of about 10 mm. The R-value was calculated to 0.232 for all concen-
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Fig. 3. Diagram according
to equ. (28) for different
concentrations.
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trations used. In fig. 3 the left member of equ. (28) is plotted against w?. The
lines (calculated from the experimental values) do not intersect the w2-axis
in the origin. The reason for this is the difficulty to determine the exact start-
ing time, because the substance always starts its sedimentation before the
rotor has reached its full speed. Further the meniscus can have an effect on
the sedimentation during the first moments. The following intersection points
have been -calculated: w2 = -+ 147.3.107, + 134.3.107, — 143.0 - 107, —
310.9. 107 and — 317.6 - 107, Correcting the w?-values used in fig. 3 for these
values we can use equ. (28) to calculate the s-values corresponding to each
point in the cell. The values obtained follow from table 1 where z is in cm
and s in S-units. It is evident that we do not have any changes in the s-values

Table 1. Values of 84,5, for different concentrations.

co = 0.396 ¢y = 0.298 co = 0.198 cy = 0.104 ¢y = 0.047
x 81,20 z 31,920 z 81,20 z 81,20 z 81,20
5.840 5.838 5.837 5.839 5.874

5.991 32.6 | 5.954 39.4 | 6.031 43.3 6.109 48.6 | 6.074 50.4
6.045 32.9| 6.018 38.0 1 6.095 42.8 | 6.207 50.6 | 6.146 50.1
6.101 32.7 | 6.076 36.6 | 6.170 42.8 | 6.274 484 | 6.228 48.5
6.213 32.2 6.133 36.3 6.251 41.0 | 6.404 49.1 6.332 51.4
6.333 32.3 | 6.262 36.1 6.407 42.3 | 6.548 484 | 6.414 49.7
6.462 32.7 6.400 36.6 | 6.556 42.6| 6.778 49.3 50.0
6.596 32.6 | 6.549 36.8 | 6.735 42.5 490
32.5 | 6.688 37.3 | 6.881 42.4

36.9 42.4
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which can be due to decrease in the concentration or to the polydispersity of
the substance. In any case these changes are less than the experimental accu-
racy.

Plotting s against c.s, we get for s at zero concentration, s, = 59.0 S,
and for the characterization of the concentration dependence, & = 2.0 (c¢f.
Gralén, [. ¢c. p. 12). Thus the dependence of concentration is rather low.

Having characterized our substance and shown that there is no observable
displacement of the maximum point of the sedimentation curve, we can pro-
ceed to the caleulations according to equ. (21). Since this equation is valid
only in a case where we do not have any changes in the hydrostatic pressure,
we have to introduce the above mentioned corrections. At the same time,
we can reduce the B-values to the temperature 20° C and the pressure 1 atm.
For equ. (28) we easily get the necessary corrections. The final result is:

B = % _ _

x R Ax\2

‘x R px\2? AL+ 6 (1) de In x—o +§(a) (29)
{(;0) [1 +3(5) ]} (@) v
1+R.—
Zo
or in an abbreviated form
Co

B =

N

Since there is no change in the s-values, ¥ is equal to the x previously used.
dc/dz can be calculated from the heights (Z) measured in the sedimentation
diagrams by means of the formula (c¢f. UC p. 259)

dc Z
dz ~ Gaba (31)
where « is the refractive index increment, G the photographic enlargement,
- @ the thickness of the cell, and b the scale distance. For the case of simplicity,

. dn/dz can be calculated instead of dc/dz, and at the same time, ¢y in the nume-
‘rator bf equ. (30) can be expressed in refractive index units by multiplication
‘with ¢. The value of ¢ for the substance used here, determined in acstone,
was 134 . 1073,
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Table 2. Values of dB[d% calculated according to eqd. (21).

¢p = 0.396 co = 0.298 cp = 0.198

T B | dB/d= z B | dBjd= z B | dB/dz
5.840 5.838 5.837
5.991 146 | 0.24 | 5.954 240 | 040 | 6.031 2.83 | 0.47
6.045 1.38 | 0.23 | 6.018 2.06 | 034 | 6.095 247 | 041
6.101 128 | 021 | 6.076 172 | 028 | 6.170 2.57 | 0.42
6.213 143 | 023 | 6.133 1.95 | 032 | 6251 2.69 | 0.43
6.333 131 | 021 | 6.262 1.99 | 032 | 6407 2.69 | 0.42
6.462 147 | 023 | 6.400 2.06 | 032 | 6.556 242 | 0.37
6.595 137 | 021 | 6.549 2.00 | 0.1 6.735 247 | 0.37

6.688 1.93 | 029 | 6.881 2.96 | 0.43
cg = 0.104 cg = 0.047

z B | dB/dx = B | dBldT
5.839 5.874
6.109 3.37 | 055 | 6.074 2.95 | 049
6.207 3.00 | 048 | 6.146 3.07 | 0.50
6.274 341 | 054 | 6.228 3.01 | 048
6.404 3.6 | 0.55 | 6.332 3.88 | 0.61
6.548 3.25 | 050 | 6414 4.37 | 0.68
6.778 3.50 | 0.52

The performance of all the numerical calculations is omitted here. The
final values follow from table 2. Theoretically the B-values should increase
with increasing distance from the centre of rotation. This is not quite obvious
from the values given in the table, but the dB/dx-values show a rather good
consistency for each concentration. Notwithstanding the difficulties in measur-
ing the heights of the sedimentation curves, the result is quite satisfactory.
The following mean values (with mean deviations from the mean) are obtained

Co dB[dx
0.396 0.22 - 0.01
0.298 0.32 4 0.03
0.198 0.41 4+ 0.02
0.104 0.52 4 0.03
0.047 0.55 & 0.07
0 0.61

The last value is extrapolated to zero concentration.
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This example shows that the new formula derived for a non concentration
dependent sedimentation can be used even in the case of concentration de-
pendence. One advantage of this method over Gralén’s is, that the values of
dB/dz obtained for different distances from the centre of rotation theoretically
shall be independent of this distance. The example given presents experimen-
tal evidence that this is the case even for substances with concentration de-
pendent sedimentation. It is consequently possible to get evidence that the
quantities measured in the sedimentation diagrams are correct.

A further use of the method will show if it is possible to apply the simple
formula (21) even to substances having greater concentration dependence.

SUMMARY

The dB/dz-method introduced by Gralén to characterize polydispersity
of high molecular compounds has been studied as regards the influence of
1) increase in centrifugal field with the distance from the centre of rotation,
2) dilution with the sector shape of the cell, and 3) displacements in the maxi-
mum point of the sedimentation curve. The result is that generally the width
B is not a linear function of z, however, it is shown that a linear relationship
can be obtained, if corrections are introduced for the above mentioned in-
fluences. The new method has been applied with a good result to a polymerie
methyl methacrylate.

This investigation is a part of a general research programme on synthetic textile fi-
bers carried out at the request of AB. Werner och Carlstrém, Gothenburg, Sweden.
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